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Introduction
[ 1o}

Example of classical /Projective toric code

Classical toric code: Span of the evaluation on (IF;)? of monomials

y2
Yy oxy
x
HOMOGENISATION: choose variety & degree
2on P [X,Y,Z] (1,2) on P xPY [Xo, X1, Y0, Y1]
y? XoYZ X, VP
YZ XY XoYoY:s XiYonh
z: Xz X? XoYZ  X1Y2

Projective toric code: Span of the evaluation of monomials on rational points of the whole variety

(17a317b) (071>17b)
(a‘ab71) (O’?lﬂo) (17010) (1’017071) (07170’1)

(a,b) eF2
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Introduction
[ 1o}

Example of classical /Projective toric code

Classical toric code: Span of the evaluation on (IF;)? of monomials

y2
Yy oxy
x
HOMOGENISATION: choose variety & degree
2on P [X,Y,Z] (1,2) on P xPY [Xo, X1, Y0, Y1]
y? XoYZ X, VP
YZ XY XoYoY:s XiYonh
z: Xz X? XoYZ  X1Y2

Projective toric code: Span of the evaluation of monomials on rational points of the whole variety
(17 a/’ 17 b) (07 1) 17 b)
(a‘ab71) (O’?lﬂo) (17010) (1’017071) (07170’1)
(a,b) eF2

Polygon < variety & degree
Explicit construction and parameters of projective toric codes Jade Nardi



Introduction
oe

Classical /Projective toric codes

An integral polytope P c RY (vertices in ZV) defines an abstract toric variety X p with a divisor D and
a monomial basis of L(D) (set of polynomials of a certain degree).

[FZZHA
Size of P « Degree in L(D) B |:|
P2 P! x P! P! x P! x P!
Degree 2 Degree (1,2) Degree (4,3,3)

Why toric?
— A\ N
Xp contains a dense torus Tp ~ (]Fq*) whose rational points are (F;)".

Classical toric code: Cp = {(f(t))téTP(]Fq) | feL(D)}
Hansen [Han02], Little-Schwarz [LS05], Ruano [Rua07], Soprunov-Soprunova [SS09]

Aim : Constructing and studying the projective toric code

PCp = {(f(%))xexp(x,) | f € L(D)}
Advantages similar to RM — PRM:
@ length ~, minimum distance . with roughly the same dimension.
@® Strenghten the geometric interpretation
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Handling a toric variety
e0

Description of the toric variety X p associated to the polytope P

Several ways to describe X p thanks to the integral polytope P : (under some assumptions)

® geometric properties

® with fans as an abstract variety & implementation

Explicit construction and parameters of projective toric codes Jade Nardi



Handling a toric variety
e0

Description of the toric variety X p associated to the polytope P

Several ways to describe X p thanks to the integral polytope P : (under some assumptions)

® geometric properties

® with fans as an abstract variety & implementation

@ practical description

o embedded into P#(P7%")-1 !
© very large ambiant
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Handling a toric variety
e0

Description of the toric variety X p associated to the polytope P

Several ways to describe X p thanks to the integral polytope P : (under some assumptions)

® geometric properties

® with fans as an abstract variety & implementation

@ practical description

o embedded into P#(P7%")-1 !
© very large ambiant

® as a quotient of a subset of A" (where r = nb of facets of P) by a group G (simplicial variety)

® more reasonable ambient
@ functions of L(D) = polynomials in r variables
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Handling a toric variety
e0

Description of the toric variety X p associated to the polytope P

Several ways to describe X p thanks to the integral polytope P : (under some assumptions)

® geometric properties

® with fans as an abstract variety & implementation

(PmZN)_1 @  practical description

* embedded into P* .
© very large ambiant

® as a quotient of a subset of A" (where r = nb of facets of P) by a group G (simplicial variety)
® more reasonable ambient
@ functions of L(D) = polynomials in r variables

Example: P = Conv((0,0),(1,0),(0,1),(1,1)) c R? gives Xp = P' x P! :
* embedded in P* by the Segre map: (o, 1, v0,y1) = (z:y;),
* defined as the quotient of (A” \ {(0,0)})2 c A* by the group (F*)? via the action

(A 1) - (o, 1,90, y1) = (Ao, AT1, piyjo, f1y1)

Functions= bihomogeneous polynomials
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Handling a toric variety

oe

For classical toric codes, an integral point m ¢ P nZ"Y gives a monomial x™ = XM oXEN.
In the projective case, it corresponds to a monomial x{™ " ¢ Fo[X1,...,X¢].

L(D) = Span (X(m’P> |mePn ZN)

m,P)

We can go from x™ to x! via homogenization process.

Explicit construction and parameters of projective toric codes Jade Nardi



Handling a toric variety

oe

For classical toric codes, an integral point m ¢ P nZ"Y gives a monomial x™ = XM oXEN.
In the projective case, it corresponds to a monomial x{™ " ¢ Fo[X1,...,X:].

L(D) = Span (X(m’P> |mePn ZN)

We can go from x™ to x (™!

via homogenization process.
Example on P?:

m 0,1

R ® X =x1T3 = X2.
m '[' \\2P o (™P) = X, « homogenized in degree 1
- o (™2P) = XX, « homogenized in degree 2

P
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Handling a toric variety g Jimension Summar

oe

For classical toric codes, an integral point m ¢ P nZ"Y gives a monomial x™ = XM oXEN.
In the projective case, it corresponds to a monomial x{™ " ¢ Fo[X1,...,X:].

L(D) = Span (X(m’P> |mePn ZN)

m,P)

We can go from x™ to x! via homogenization process.

Example on P?:

1
™= 0%k = zg.
N (m,P)

X
m v2P °
B.‘_s o y(m:2P)

P

N °
[IRY
' = X5 « homogenized in degree 1

= X0 X2 < homogenized in degree 2

PCp = Span{(x(m’P>(x)) € Fy, me PnZN} where n = #Xp(Fy).

X€
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Introduction a toric variet Length

The variety Xp is the disjoint union of tori : Xp= | | Tg with Tg = (F,)dme
Q faces of P dim Q
= #Tq(Fq) = (¢-1)T™"".

Number of F,-points of Xp

#Xp(F,) = (g-1)N + Nz_:l (nb of i-dim faces) x (¢ —1)".

=0

Projective Plane P?

points
with # 0
coord.

#P*(Fy) = (q-1)°
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Introduction a toric variet Length

The variety Xp is the disjoint union of tori : Xp= | | Tg with Tg = (F,)dme
Q faces of P dim Q
= #Tq(Fq) = (¢-1)T™"".

Number of F,-points of Xp

#Xp(F,) = (g-1)N + Nz_:l (nb of i-dim faces) x (¢ —1)".

=0

Projective Plane P?

pts with
-7
‘N - one 0
points \
with # 0 =7
coord.

#P?(Fq) = (¢-1)*+3(q-1)
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Introduction a toric variet Length

The variety Xp is the disjoint union of tori : Xp= | | Tg with Tg = (F,)dme
Q faces of P dim Q
= #Tq(Fq) = (¢-1)T™"".

Number of F,-points of Xp

#Xp(F,) = (g-1)N + Nz_:l (nb of i-dim faces) x (¢ —1)".

=0

Projective Plane P?

pts with
&~ 7
‘N one 0
points \
with # 0 =7
coord.

#P?(Fy) = (¢-1)*+3(g-1)+3
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Length Jimension ample Summar owards new champion codes

The variety Xp is the disjoint union of tori : Xp= | | Tg with Tg = (F,)dme
Q faces of P dim Q
= #Tq(Fq) = (¢-1)T™"".

Number of F,-points of Xp

N-1

#Xp(F,) = (g-1)N + > (nb of i-dim faces) x (g - 1)".
=0
A random toric 3-fold
Projective Plane P? —
pts with
&~ 7
‘N one 0
points \ dim 1 0
with = 0 =7 # faces || 1 | 8 | 18 | 12
coord. 3 2
#Xp(Fy) =(¢-1)" +8(q-1)
2 —(_1)2 _
#P?(Fy) =(¢g-1)"+3(¢g-1)+3 +18(g-1)+12

¢ Length of PCp
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Dimension
@00

Dimension of classical toric code

“Recall”: The integral points of P give a monomial basis of Cp and PCp.

Integral point me PNZY < ev (X(m’P>) e Cp/PCp
———

- g-1 monomial
CLASSICAL CASE: on g, 29~ = 1.
For two elements (u,v) € (ZY)?, we write u~ v if u—v e (¢-1)Z".

Theorem [Ruano 07]

o (mP)(t) = X<m"P)(t) for every t € Tp(Fy) < m ~m/,
* If P is a set of representatives of P nZ" modulo ~, then {(X(W’P)(t), teTp(Fy)|me ]_3} is a
basis of Cp.

Not so nice when homogenizing! On P'(F,), XJ # Xo X7 ' at [1:0].

Explicit construction and parameters of projective toric codes Jade Nardi



Dimension
000

(1,a,0), (1,0,a), (0,1,a)

N i (1,0,0)

Q° = interior of the face Q (g-1)2 torus points 7 edges (0,1,0)
(a,b,1) -1 (0,0,1)

points T vertices

— —

meP°

!
Xiyd gz
1<i,jandi+j<d

me Fy
inpd—i ol ___________
O
Yzt
 mem

vertices of P

!
x4 yd z4
Figure: “Generator” matrix of PCp when P is a polygon (N = 2)

meters of projective toric codes
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Dimension

000

(1,a,0), (1,0,a), (0,1,a)

L ) (1,0,0)
Q° = interior of the face Q (g-1)2 torus points 7 edges (0,1,0)
(a,b,1) q-1 (0,0,1)
points T vertices
— —
meP°
! d
X'y ze G (Cpo)

I<ijandi+j<d

Xiydi
Xigd-i
yigd-i
comeF ) Rnnnnininaned o GCe)
koeek PRI |
vertices of P Nk ek 1
! .
x4y, 74 1

ERERES Sk

Figure: “Generator” matrix of PCp when P is a polygon (N = 2)

Explicit construction and p:

meters of projective toric codes



Dimension

000

(1,a,0), (1,0,a), (0,1,a)

L ) (1,0,0)
Q° = interior of the face Q (g-1)2 torus points 7 edges (0,1,0)
(a,b,1) q-1 (0,0,1)
points T vertices
— —
meP°
! d
X'y ze G (Cpo)

I<ijandi+j<d

Xiydi
Xigd-i
yigd-i
comeF ) Rnnnnininaned o GCe)
koeek PRI |
vertices of P Nk ek 1
! .
x4y, 74 1

ERERES Sk

Figure: “Generator” matrix of PCp when P is a polygon (N = 2)
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Dimension
000

(1,a,0), (1,0,a), (0,1,a)

o _ i . . (1,0,0)
Q° = interior of the face Q (q-1)? torus points  edees (0:1.0)
(a,b,1) q-1 (0,0,1)
points T vertices
— —
meP°
1,1
X'y ze G (Cpo)
I<ijandi+j<d
me Fy G (CF°)
D 2
, me kg G(Crs)
Xiz9-t b LIl ___________
yigd-i
comeF ) Rnnnnininaned o GCe)
koeek PRI |
vertices of P Feek keek 1
! X
x4y, 74 1

.. %

Figure: “Generator” matrix of PCp when P is a polygon .(N = 2)

For any polytope P, there is a generator matrix of PCp with such a triangular block structure.
v Explicit construction of PCp
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Dimension
ooe

Dimension and reduction modulo ¢ - 1

Dimension of PCp = rank of the previous matrix = »_ dim Cqo
Q

PROJECTIVE CASE: Reduction of P face by face.
On PnZ"Y, we write m ~p m/ if there exists a face Q of P s.t. m, m' € Q° and m-m/ ¢ (¢—1)Z".

Theorem [N. 20]

‘

o \mPl(x) = ™ ‘P)(x) for every x € Xp(Fy) < m ~p m/,
* If Red(P) is a set of representatives of P nZ~ modulo ~p, then {evP(X(m‘P” | m € Red(P)} is
a basis of PCp.

« Dimension of PCp

Explicit construction and parameters of projective toric codes Jade Nardi



Example
[ ]

Example of computation of the dimension of PCp and Cp

Let a, b, n € N* and P(n) = Conv((0,0), (a,0), (a,b),(0,b+na)).
— Xp(y) called a Hirzebruch surface 4 a divisor of bidegree (a,b).

Xp(Fg) = (g-1)" +4(g-1)+4=(g+1)*
7 Reduce P modulo ¢ —1 = 6.
Let us compare the dimPCp and dim Cp on F7 for different (a,b).
> Reduce the interior of each face modulo ¢ — 1 = 6.

(a,b) =(3,5)

(.0 (a,b) =(2,1)
(0,b+na)
(a,b) (a,b)
(0,0) (a,0)
(0,0) (a,0)

Explicit construction and parameters of projective toric codes Jade Nardi



Example
[ ]

Example of computation of the dimension of PCp and Cp

Let a, b, n € N* and P(n) = Conv((0,0), (a,0), (a,b),(0,b+na)).
— Xp(y) called a Hirzebruch surface 4 a divisor of bidegree (a,b).
Xpy(F) = (4-1)" +4(g-1) +4= (¢ +1)*
7 Reduce P modulo ¢ —1 = 6.

Let us compare the dimPCp and dim Cp on F7 for different (a,b).
> Reduce the interior of each face modulo ¢ — 1 = 6.

(a,b) = (3,5)
(0,b+7a) (a,0) = (2,1)

(0,64 ma)

(a,b) (a,b)
(0,0) (a,0)

(0,0

(a,0)

Explicit construction and parameters of projective toric codes Jade Nardi



Example
[ ]

Example of computation of the dimension of PCp and Cp

Let a, b, n € N* and P(n) = Conv((0,0), (a,0), (a,b),(0,b+na)).
— Xp(y) called a Hirzebruch surface 4 a divisor of bidegree (a,b).

Xp(Fg) = (g-1)" +4(g-1)+4=(g+1)*
7 Reduce P modulo ¢ —1 = 6.
Let us compare the dimPCp and dim Cp on F7 for different (a,b).
> Reduce the interior of each face modulo ¢ — 1 = 6.

(a,b) =(3,5)

(.0 (a,b) =(2,1)
(0,b+na)

(a,b) (a,b)

(0,0) (a,0)

(0,0) (a,0)
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Example
[ ]

Example of computation of the dimension of PCp and Cp

Let a, b, n € N* and P(n) = Conv((0,0), (a,0), (a,b),(0,b+na)).
— Xp(y) called a Hirzebruch surface 4 a divisor of bidegree (a,b).

Xp(Fg) = (g-1)" +4(g-1)+4=(g+1)*
7 Reduce P modulo ¢ —1 = 6.
Let us compare the dimPCp and dim Cp on F7 for different (a,b).
> Reduce the interior of each face modulo ¢ — 1 = 6.

(a,b) =(3,5)

Qo (a,b) = (2,1)
(0,b+na)
dim PCp = 30
b (a,b)
: : ‘ (0,0) (a,0)
(0,0) 4 (a,0)

Explicit construction and parameters of projective toric codes Jade Nardi



Example
[ ]

Example of computation of the dimension of PCp and Cp

Let a, b, n € N* and P(n) = Conv((0,0), (a,0), (a,b),(0,b+na)).
— Xp(y) called a Hirzebruch surface 4 a divisor of bidegree (a,b).

Xp(Fg) = (g-1)" +4(g-1)+4=(g+1)*
7 Reduce P modulo ¢ —1 = 6.
Let us compare the dimPCp and dim Cp on F7 for different (a,b).
> Reduce the interior of each face modulo ¢ — 1 = 6.

(a,b) = (3,5)
(.02 m) (a,b) =(2,1)
(0,b+na)
dim PCp = 30
dimCp =24
(a,b) (a,b)
(0,0) (a,0)

(0,0) (a,0)
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Example
[ ]

Example of computation of the dimension of PCp and Cp

Let a, b, n € N* and P(n) = Conv((0,0), (a,0), (a,b),(0,b+na)).
— Xp(y) called a Hirzebruch surface 4 a divisor of bidegree (a,b).

Xp(Fg) = (g-1)" +4(g-1)+4=(g+1)*
7 Reduce P modulo ¢ —1 = 6.
Let us compare the dimPCp and dim Cp on F7 for different (a,b).
> Reduce the interior of each face modulo ¢ — 1 = 6.

(a,b) = (3,5)
@ 00)=(.)
(0,b 4+ na) [0,q-2]?
dim PCp =30
dimCp =24

(a,b) (a,b)
(0,0) (a,0)

(0,0) (a,0)
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Example
[ ]

Example of computation of the dimension of PCp and Cp

Let a, b, n € N* and P(n) = Conv((0,0), (a,0), (a,b),(0,b+na)).
— Xp(y) called a Hirzebruch surface 4 a divisor of bidegree (a,b).

Xpem(Fq) = (g-1)" +4(g-1) +4 = (g+1).
7 Reduce P modulo ¢ —1 = 6.

Let us compare the dimPCp and dim Cp on F7 for different (a,b).
> Reduce the interior of each face modulo ¢ — 1 = 6.

(a,b) = (3,5)
(.02 m) (a,b) =(2,1)

(0,6 +na) [0,q 2]

dim PCp =30

dimCp =24
(a;b)

dimPCp =dimCp = #PnZ% =12

(0,0) (a,0)
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Summary
[ ]

Minimum distance

Lower bound on the minimum distance of PCp more technical [CN16, Nar19]
Key ingredient: (theorical) Grobner basis of the vanishing ideal of Xp(F,)
— no problem from the exponential growth in #variables of the complexity of its actual computation.

In conclusion, this work provides a general framework for studying AG codes on toric varieties. Given a
polytope P, we can

® compute exactly the dimension of the code PCp,
® get a lowerbound on the minimum distance (not always sharp),

provided that we have a good algorithm to determine the integral points of a polytope.

10) ((s[%] + V)logé) for a polytope of dim. N of vol. V' with s vertices, and where ¢ is the maximum
modulus of the coordinates of the vertices of P [SV13, Prop. 3.5].
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Summar Towards new champion codes

@000

Brown and Kasprzyk [BK13] systematically investigated (generalized) toric codes associated to small
polygons — good codes acheiving/beating the best-known parameters.

Given a champion toric code Cp,
© PCp is unlikely to be a champion code itself,
@ indicate how to extend Cp while keeping good parameters.

Champion generalizing toric code [49,14,26] over Fg [BK13] "o - : -T
Cannot consider its convex hull (simphetat toric variety on Fg) jeee !
— projective toric code on Xp but PCp is [87,14, 34]s. l ’ b T
_____ °-!
Let us puncture this code!
Torus points  + 2 other points = [51,14,27]s } Best known Figure: A polygon
+ 2 other points = [53, 14, 28]8. parameters containing the points
+ 3 other points = [56, 14,29]s defining a champion
Best known : [54,14,29]s generalized toric code

[49,14,26] over Fg [BK13]

Explicit construction and parameters of projective toric codes Jade Nardi



Towards new champion codes

(o] lele)

7 ways to get non Hamming-equivalent (generalized) [49, 14, 26]g toric codes [BK13]

Explicit construction and parameters of projective toric codes



Towards new champion codes
[e]e] o]

What now?

® Looking for new champion codes this way...
® Investigate properties of these codes : Local decodability [LN20],dual codes for application to
secret sharing [Han16]

Thank you!

Explicit construction and parameters of projective toric codes Jade Nardi



Towards new champion codes
[ele]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]
©® Choose a nice total order < on Z" (addition compatibility) :
lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)4™<
(i.e. PCAP = ]Fg)

©® Compute Red(P) and Red(AP) taking into account the
order.
Representative = smallest element wrt < among a class
modulo ~(\)P

Explicit construction and parameters of projective toric codes Jade Nardi



Towards new champion codes
[ele]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]
©® Choose a nice total order < on Z" (addition compatibility) :
lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)4™<
(i.e. PCAP = ]Fg)

A=47
® Compute Red(P) and Red(AP) taking into account the §—1=3 points
order. on each edges

Representative = smallest element wrt < among a class
modulo ~(\)P
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Towards new champion codes
[ele]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]
©® Choose a nice total order < on Z" (addition compatibility) :
lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)4™<
(i.e. PCAP = ]Fg)

A=47
® Compute Red(P) and Red(AP) taking into account the §—1=3 points
order. on each edges

Representative = smallest element wrt < among a class
modulo ~(\)P

(q-1)%#7
points inside

Explicit construction and parameters of projective toric codes Jade Nardi



Towards new champion codes
[ele]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]
©® Choose a nice total order < on Z" (addition compatibility) :
lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)4™<
(i.e. PCAP = ]Fg)

A=47
® Compute Red(P) and Red(AP) taking into account the §—1=3 points
order. on each edges

Representative = smallest element wrt < among a class
modulo ~(\)P

(q-1)%#7
points inside
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Towards new champion codes
[ele]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]

©® Choose a nice total order < on Z" (addition compatibility) :

lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)¥™<@ -\

(i.e. PCAP = ]Fg)

A=5
® Compute Red(P) and Red(AP) taking into account the

order.

Representative = smallest element wrt < among a class

modulo ~(\)P

Explicit construction and parameters of projective toric codes Jade Nardi



Towards new champion codes
[ele]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]
©® Choose a nice total order < on Z" (addition compatibility) :
lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)4™<
(i.e. PCAP = ]Fg)
A=5
® Compute Red(P) and Red(AP) taking into account the
order.
Representative = smallest element wrt < among a class
modulo ~(\)P

Theorem [N. 20]

d(PCp) > mel{g{ijr(l(m # ((m + Pawj — P) nRed<(Paurj)) -

Explicit construction and parameters of projective toric codes Jade Nardi



Introduction Handling a toric variet: Length ) on ample e Towards new champion codes

[e]e]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]
©® Choose a nice total order < on Z" (addition compatibility) :
lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)4™<
(i.e. PCAP = ]Fg)
A=5
® Compute Red(P) and Red(AP) taking into account the
order.
Representative = smallest element wrt < among a class
modulo ~(\)P

Theorem [N. 20]

d(PCp) > min # ((m + Pawj — P) nRed<(Paug)) - (m +4P) N Red(5P) = 8

@)
©

Explicit construction and parameters of projective toric codes Jade Nardi



Introduction Handling a toric variet: Length

Towards new champion codes
[ele]e] )

Lowerbound on the minimum distance on a toy example on 4

KEY INGREDIENT: Grébner basis of the vanishing ideal of Xp(IF,;) [CN16, Nar19]
©® Choose a nice total order < on Z" (addition compatibility) :
lexicographic
@ Find ) s.t. for every face Q of AP, #Red(Q°) = (¢—1)4™<
(i.e. PCAP = ]Fg)
A=5
® Compute Red(P) and Red(AP) taking into account the
order.

Representative = smallest element wrt < among a class
modulo ~(\)P

g PCP iS [21,4, 8]4

Theorem [N. 20]

d(PCp)> min # ((m+ Parj— P) nRed<(Paurj)) -

meRed<(P)
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