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Example of classical/Projective toric code

Classical toric code: Span of the evaluation on (F∗q)2 of monomials
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Projective toric code: Span of the evaluation of monomials on rational points of the whole variety

(a, b,1) (a,1,0) (1,0,0) (1, a,1, b) (0,1,1, b)
(1, a,0,1) (0,1,0,1)

(a, b) ∈ F2
q

Polygon ↔ variety & degree
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Classical/Projective toric codes

An integral polytope P ⊂ RN (vertices in ZN ) defines an abstract toric variety XP with a divisor D and
a monomial basis of L(D) (set of polynomials of a certain degree).

Size of P ↔ Degree in L(D)
P2

Degree 2

P1
× P1

Degree (1,2)
P1

× P1
× P1

Degree (4,3,3)
Why toric?

XP contains a dense torus TP ≃ (Fq
∗)
N

whose rational points are (F∗q)N .

Classical toric code: CP = {(f(t))t∈TP (Fq) ∣ f ∈ L(D)}
Hansen [Han02], Little-Schwarz [LS05], Ruano [Rua07], Soprunov-Soprunova [SS09]

Aim : Constructing and studying the projective toric code

PCP = {(f(x))x∈XP (Fq) ∣ f ∈ L(D)}

Advantages similar to RM→ PRM:

1 length ↗, minimum distance ↗ with roughly the same dimension.

2 Strenghten the geometric interpretation

Explicit construction and parameters of projective toric codes Jade Nardi
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Description of the toric variety XP associated to the polytope P

Several ways to describe XP thanks to the integral polytope P : (under some assumptions)

● with fans as an abstract variety
⊕ geometric properties
⊖ implementation

● embedded into P#(P∩ZN )−1 ⊕ practical description
⊖ very large ambiant

● as a quotient of a subset of Ar (where r = nb of facets of P ) by a group G (simplicial variety)
⊕ more reasonable ambient
⊕ functions of L(D) = polynomials in r variables

Example: P = Conv((0,0), (1,0), (0,1), (1,1)) ⊂ R2 gives XP = P1 × P1 :

● embedded in P3 by the Segre map: (x0, x1, y0, y1) ↦ (xiyj),

● defined as the quotient of (A2 ∖ {(0,0)})2 ⊂ A4 by the group (F̄∗)2 via the action

(λ,µ) ⋅ (x0, x1, y0, y1) = (λx0, λx1, µy0, µy1)

Functions= bihomogeneous polynomials

Explicit construction and parameters of projective toric codes Jade Nardi
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For classical toric codes, an integral point m ∈ P ∩ ZN gives a monomial χm =Xm1
1 . . .XmN

N .

In the projective case, it corresponds to a monomial χ⟨m,P ⟩ ∈ Fq[X1, . . . ,Xr].

L(D) = Span (χ⟨m,P ⟩ ∣m ∈ P ∩ ZN)

We can go from χm to χ⟨m,P ⟩ via homogenization process.

Example on P2:

P

m 2P

● χm = x01x12 = x2.

● χ⟨m,P ⟩ =X2 ← homogenized in degree 1

● χ⟨m,2P ⟩ =X0X2 ← homogenized in degree 2

PCP = Span{(χ⟨m,P ⟩(x))
x∈P

∈ Fnq , m ∈ P ∩ ZN} where n = #XP (Fq).

Explicit construction and parameters of projective toric codes Jade Nardi
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The variety XP is the disjoint union of tori : XP = ⊔
Q faces of P

TQ with TQ = (Fq
∗)dimQ

⇒ #TQ(Fq) = (q − 1)dimQ.

Number of Fq-points of XP

#XP (Fq) = (q − 1)N +
N−1
∑
i=0

(nb of i-dim faces) × (q − 1)i.

Projective Plane P2

points
with ≠ 0
coord.

pts with
one 0

#P2(Fq) = (q − 1)2

+ 3(q − 1) + 3

A random toric 3-fold

dim 3 2 1 0
# faces 1 8 18 12

#XP (Fq) =(q − 1)3 + 8(q − 1)2

+ 18(q − 1) + 12

Ë Length of PCP

Explicit construction and parameters of projective toric codes Jade Nardi
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Dimension of classical toric code

“Recall”: The integral points of P give a monomial basis of CP and PCP .

Integral point m ∈ P ∩ ZN ↔ ev (χ⟨m,P ⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

monomial

∈ CP /PCP

Classical case: on F∗q , xq−1 = 1.
For two elements (u, v) ∈ (ZN)2, we write u ∼ v if u − v ∈ (q − 1)ZN .

Theorem [Ruano 07]

● χ⟨m,P ⟩(t) = χ⟨m′,P ⟩(t) for every t ∈ TP (Fq) ⇔ m ∼m′,

● If P is a set of representatives of P ∩ ZN modulo ∼, then {(χ⟨m,P ⟩(t), t ∈ TP (Fq) ∣m ∈ P} is a
basis of CP .

Not so nice when homogenizing! On P1(Fq), Xq
0 ≠X0X

q−1
1 at [1 ∶ 0].

Explicit construction and parameters of projective toric codes Jade Nardi
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(q − 1)2 torus points
(a, b,1)

(1, a,0), (1,0, a), (0,1, a)
r edges

q − 1
points ... ...

(1,0,0)
(0,1,0)
(0,0,1)
r vertices

Q○ = interior of the face Q

m ∈ P ○

↕
XiY jZd−i−j

1 ≤ i, j and i + j < d

m ∈ F ○
1

m ∈ F ○
2

⋮

m ∈ F ○
r

vertices of P
↕

Xd, Y d, Zd

XiY d−i

XiZd−i

Y iZd−i

G (CP ○)

G (CF ○
1
)

G (CF ○
2
)

. . .

G (CF ○r )
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗
∗ ⋅ ⋅ ⋅ ∗ ∗ ⋅ ⋅ ⋅ ∗

∗ ⋅ ⋅ ⋅ ∗∗ ⋅ ⋅ ⋅ ∗

1
1

⋱
1

Figure: “Generator” matrix of PCP when P is a polygon (N = 2)

For any polytope P , there is a generator matrix of PCP with such a triangular block structure.
Ë Explicit construction of PCP

Explicit construction and parameters of projective toric codes Jade Nardi
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Dimension and reduction modulo q − 1

Dimension of PCP = rank of the previous matrix = ∑
Q

dim CQ○

Projective case: Reduction of P face by face.

On P ∩ ZN , we write m ∼P m′ if there exists a face Q of P s.t. m, m′ ∈ Q○ and m −m′ ∈ (q − 1)ZN .

Theorem [N. 20]

● χ⟨m,P ⟩(x) = χ⟨m′,P ⟩(x) for every x ∈XP (Fq) ⇔ m ∼P m′,

● If Red(P ) is a set of representatives of P ∩ ZN modulo ∼P , then {evP (χ⟨m,P ⟩) ∣m ∈ Red(P )} is
a basis of PCP .

Ë Dimension of PCP

Explicit construction and parameters of projective toric codes Jade Nardi
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Example of computation of the dimension of PCP and CP

Let a, b, η ∈ N∗ and P (η) = Conv((0,0), (a,0), (a, b), (0, b + ηa)).
→ XP (η) called a Hirzebruch surface + a divisor of bidegree (a, b).

XP (η)(Fq) = (q − 1)2 + 4(q − 1) + 4 = (q + 1)2.
↱ Reduce P modulo q − 1 = 6.

Let us compare the dim PCP and dim CP on F7 for different (a, b).↰

Reduce the interior of each face modulo q − 1 = 6.

(a, b) = (3,5)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

dim PCP = 30
dim CP = 24

(a, b) = (2,1)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

[0, q − 2]2

dim PCP = dim CP = #P ∩ Z2 = 12

Explicit construction and parameters of projective toric codes Jade Nardi



Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography

Example of computation of the dimension of PCP and CP

Let a, b, η ∈ N∗ and P (η) = Conv((0,0), (a,0), (a, b), (0, b + ηa)).
→ XP (η) called a Hirzebruch surface + a divisor of bidegree (a, b).

XP (η)(Fq) = (q − 1)2 + 4(q − 1) + 4 = (q + 1)2.
↱ Reduce P modulo q − 1 = 6.

Let us compare the dim PCP and dim CP on F7 for different (a, b).↰

Reduce the interior of each face modulo q − 1 = 6.

(a, b) = (3,5)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

dim PCP = 30
dim CP = 24

(a, b) = (2,1)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

[0, q − 2]2

dim PCP = dim CP = #P ∩ Z2 = 12

Explicit construction and parameters of projective toric codes Jade Nardi



Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography

Example of computation of the dimension of PCP and CP

Let a, b, η ∈ N∗ and P (η) = Conv((0,0), (a,0), (a, b), (0, b + ηa)).
→ XP (η) called a Hirzebruch surface + a divisor of bidegree (a, b).

XP (η)(Fq) = (q − 1)2 + 4(q − 1) + 4 = (q + 1)2.
↱ Reduce P modulo q − 1 = 6.

Let us compare the dim PCP and dim CP on F7 for different (a, b).↰

Reduce the interior of each face modulo q − 1 = 6.

(a, b) = (3,5)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

dim PCP = 30
dim CP = 24

(a, b) = (2,1)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

[0, q − 2]2

dim PCP = dim CP = #P ∩ Z2 = 12

Explicit construction and parameters of projective toric codes Jade Nardi



Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography

Example of computation of the dimension of PCP and CP

Let a, b, η ∈ N∗ and P (η) = Conv((0,0), (a,0), (a, b), (0, b + ηa)).
→ XP (η) called a Hirzebruch surface + a divisor of bidegree (a, b).

XP (η)(Fq) = (q − 1)2 + 4(q − 1) + 4 = (q + 1)2.
↱ Reduce P modulo q − 1 = 6.

Let us compare the dim PCP and dim CP on F7 for different (a, b).↰

Reduce the interior of each face modulo q − 1 = 6.

(a, b) = (3,5)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

dim PCP = 30

dim CP = 24

(a, b) = (2,1)

(0,0)

(0, b + ηa)

(a,0)

(a, b)

[0, q − 2]2

dim PCP = dim CP = #P ∩ Z2 = 12

Explicit construction and parameters of projective toric codes Jade Nardi



Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography

Example of computation of the dimension of PCP and CP

Let a, b, η ∈ N∗ and P (η) = Conv((0,0), (a,0), (a, b), (0, b + ηa)).
→ XP (η) called a Hirzebruch surface + a divisor of bidegree (a, b).
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Minimum distance

Lower bound on the minimum distance of PCP more technical [CN16, Nar19]
Key ingredient: (theorical) Gröbner basis of the vanishing ideal of XP (Fq)
→ no problem from the exponential growth in #variables of the complexity of its actual computation.

In conclusion, this work provides a general framework for studying AG codes on toric varieties. Given a
polytope P , we can

● compute exactly the dimension of the code PCP ,

● get a lowerbound on the minimum distance (not always sharp),

provided that we have a good algorithm to determine the integral points of a polytope.

Õ ((s⌈N
2
⌉ + V ) log δ) for a polytope of dim. N of vol. V with s vertices, and where δ is the maximum

modulus of the coordinates of the vertices of P [SV13, Prop. 3.5].
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Brown and Kasprzyk [BK13] systematically investigated (generalized) toric codes associated to small
polygons → good codes acheiving/beating the best-known parameters.

Given a champion toric code CP ,
⊖ PCP is unlikely to be a champion code itself,
⊕ indicate how to extend CP while keeping good parameters.

Champion generalizing toric code [49,14,26] over F8 [BK13]
Cannot consider its convex hull (simplicial toric variety on F8)
→ projective toric code on XP but PCP is [87,14,34]8.

Let us puncture this code!
Torus points + 2 other points = [51,14,27]8 } Best known

parameters+ 2 other points = [53,14,28]8.
+ 3 other points = [56,14,29]8

Best known : [54,14,29]8

Figure: A polygon
containing the points
defining a champion
generalized toric code
[49,14,26] over F8 [BK13]
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7 ways to get non Hamming-equivalent (generalized) [49,14,26]8 toric codes [BK13]
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What now?

● Looking for new champion codes this way...

● Investigate properties of these codes : Local decodability [LN20],dual codes for application to
secret sharing [Han16]

Thank you!
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Lowerbound on the minimum distance on a toy example on F4

Key ingredient: Gröbner basis of the vanishing ideal of XP (Fq) [CN16, Nar19]
1 Choose a nice total order < on ZN (addition compatibility) :

lexicographic

2 Find λ s.t. for every face Q of λP , # Red(Q○) = (q − 1)dimQ

(i.e. PCλP = Fnq )

λ = 5

3 Compute Red(P ) and Red(λP ) taking into account the
order.
Representative = smallest element wrt < among a class
modulo ∼(λ)P

→ PCP is [21,4,8]4

Theorem [N. 20]

d(PCP ) ≥ min
m∈Red<(P )

# ((m + Psurj − P ) ∩Red<(Psurj)) .

(0,0)
(1,0)

(−2,3)

q − 1 = 3 points
on each edges

(q − 1)2≠7
points inside

(m + 4P ) ∩ Red(5P ) = 8
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