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Context

Advantages allowed by quantum computing:
e algorithms (Shor, Grover, ...)

e cryptography
e simulation
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Advantages allowed by quantum computing:
e algorithms (Shor, Grover, ...)

e cryptography
e simulation

Develop tools for :
e representing
e analysing/reasoning
e optimising
e verifying

quantum program/protocols.
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Quantum Computing

e Classical bits as vectors: |0) := ((1)) and |1) := (?)
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e Arbitrary quantum bits (qubits): <5> after measurement.
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Quantum Computing

e Classical bits as vectors: |0) := ((1)) and |1) := (?)

|a|? 1
a / 0
e Arbitrary quantum bits (qubits): <5> after measurement.
\ 0
B1* \a
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e Larger systems: gy ® qq AQ B= | a;oB

Introduction Renaud Vilmart January 19th, 2021 [3)(31]



Classical bits as vectors: |0) := <(1)) and |1) := (?)

]04|2 1
o' —\0
Arbitrary quantum bits (qubits): < >
Bl —_ /o
B1* \a

Larger systems: gy ® qq

Entangled state cannot be broken down as gy ® ¢4
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1
Classical bits as vectors: |0) := <0) and [1) :==

o

o —
Arbitrary quantum bits (qubits): <5>
\

Larger systems: gy ® qq

1817

(4

0
1

Entangled state cannot be broken down as gy ® ¢4

Quantum Computing

after measurement.

AR B=

Isolated systems evolve unitarily: [1);) = U|t)o) with UTU = id = UU'
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Examples

! 0><1 1>is unitary
V2 m\1 =1

o [+)i=HJo) =100 and =)= M1y = 21 (o)) and (14, 1)) are bases of €2)

V2

Introduction Renaud Vilmart January 19th, 2021 [4)(31]



Examples

o) 1)
e H:= % ?;<1 _11> is unitary
° H—> =H ’0> = % and |—> = H|1> = ‘0>\_[2|1> ((l0y, 1)) and (J+) , |—)) are bases of C2)

00)+[11) -
e EPR: % is entangled
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)11
o o1t 1y .
H := 7 ]><1 _1> Is unitary
— _ (o)1)
|+) := H|0) - and

EPR: % is entangled

state preparation

—loel+) (T T 1
QFTofo4) =11 ' 7
2 T2 -1

1 —i -1

Introduction

0)—|1

=) = Hp1) = B
1 1 2 |00)
—i o1 1 1410 | lon)
—1 V2lo]| 22 0 110)
i 0 1—i/ )

Examples

((|0> ,11)) and (J+) ,|—)) are bases of(CZ)

measurement — 50% |00) ,25%(01) ,25% |11)
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® Quantum Circuits
Gates and Processes
General Results



Quantum Circuits

Unitarity = reversibility
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Quantum Circuits

Unitarity = reversibility

Quantum gates: CX or CNot
X or Not Toffoli or CCX or CCNot
or No %: —o—
|
100 0 o
0 1 01 00 %
(1 0> 0 0 0 1
00 10 la, b, ¢) — |a, b, ab ® c)
= ’a7b> = ’ava@b>
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Unitarity = reversibility

Quantum gates: CX or CNot
X or Not g:
100 0
0 1 01 0 O
1 0 0 0 0 1
0 0 1 O
:’a7b>’_>’a7a@b>
H Z(a) or Rz(«)

(1
2\1 —1

Quantum Circuits
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Toffoli or CCX or CCNot

.

|
-

DY

la, b, ¢) — |a, b, ab ® c)
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Example of a Quantum Circuit
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Example: Teleportation




Usual Scheme

Deferred Measurement Principle’

Any measurement can be "pushed” to the very end of the procedure, without affecting the
outcome.

'Nielsen, Chuang, Quantum Computation and Quantum Information
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Usual Scheme

Deferred Measurement Principle’

Any measurement can be "pushed” to the very end of the procedure, without affecting the
outcome.

Usual scheme for quantum computing:
@ Initialise register of qubits
® Apply unitary gates
©® Measure qubits

'Nielsen, Chuang, Quantum Computation and Quantum Information
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Universality and Fragments

Theorem : Universality?

The gate set {H, Z(«), CX}qcr is universal.

2[Barenco et al.’95]
3Gottesman-Knill theorem, [Gottesman’98]
*[Boykin, Mor, Pulver, Roychowdhury, Vatan’ 00]

*Solovay-Kitaev theorem, [Kitaev’97]
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Theorem : Universality?

The gate set {H, Z(«), CX}qcr is universal.

Z(a) = infinite (uncountable) family of gates
= bad for analysis and implementability
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Theorem : Universality?

The gate set {H, Z(«), CX}qcr is universal.

Z(a) = infinite (uncountable) family of gates
= bad for analysis and implementability

e Clifford fragment : e € 77

e not universal
e efficiently simulable on a classical computer®

2[Barenco et al.’95]

3Gottesman-Knill theorem, [Gottesman’98]
*[Boykin, Mor, Pulver, Roychowdhury, Vatan’ 00]
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Universality and Fragments

Theorem : Universality?

The gate set {H, Z(«), CX}qcr is universal.

Z(a) = infinite (uncountable) family of gates
= bad for analysis and implementability

e Clifford fragment : e € 77

e not universal

e efficiently simulable on a classical computer®
e Clifford+T fragment: a € 57

e approx. universal®, with efficient approximation®

2[Barenco et al.’95]
3Gottesman-Knill theorem, [Gottesman’98]
*[Boykin, Mor, Pulver, Roychowdhury, Vatan’ 00]
*Solovay-Kitaev theorem, [Kitaev’97]

Quantum Circuits
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Example: [Grover’96]

Pb: search of an element x in an unordered array of size 2V
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Example: [Grover’96]

Pb: search of an element x in an unordered array of size 2V

amplitude

[ —
012 3 456 7

L% V ZNJ times element number
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Example: [Grover’96]

Pb: search of an element x in an unordered array of size 2V

0.5

.
. ;

[ —
012 3 456 7

L% V ZNJ times element number

amplitude
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Example: [Grover’96]
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/
7

[ —
012 3 456 7

L% V ZNJ times element number

amplitude

Quantum Circuits Renaud Vilmart January 19th, 2021 |10)(31|



Pb: search of an element x in an unordered array of size 2V

L%\/ZT’J times

Quantum Circuits
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amplitude

0.5

Example: [Grover’96]

012 3 456 7
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January 19th, 2021

[10)(31]



Pb: search of an element x in an unordered array of size 2V

L%\/ZT’J times

Quantum Circuits
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amplitude

0.5

Example: [Grover’96]

012 3 456 7

element number
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Example: [Grover’96]

Pb: search of an element x in an unordered array of size 2V

1 |

A g
N E
]
| g
— = ) mmmml e |
.. /
/ 7
01 2 3 45 6 7

L% V ZNJ times element number
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Example: [Grover’96]

Pb: search of an element x in an unordered array of size 2V

0.5

N 3
=
- ;
a — o ammmlEmmm |
/
7
\0\1\2\3\4\5\6\7\
L% V ZNJ times element number

Classically check the result, and repeat if fail
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Example: [Grover’96]

Pb: search of an element x in an unordered array of size 2V

0.5

amplitude
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[ —
012 3 456 7

L% V ZNJ times element number

Classically check the result, and repeat if fail
= Quantum part is only a subroutine
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Example: [Grover’96]

Pb: search of an element x in an unordered array of size 2V

0.5

amplitude

— o INEEEEEN |

012 3 456 7

L% V ZNJ times element number

Classically check the result, and repeat if fail
= Quantum part is only a subroutine
Algo in O(V2N) vs. O(2V) classically
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Circuit Equivalence

Problem of circuit equivalence

Do two given circuits implement the same operator?
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Circuit Equivalence

Problem of circuit equivalence

Do two given circuits implement the same operator?

e Decidable: compute the matrices!
e But hard: QMA-hard (quantum equivalent of NP-hard)
e Other (better?) idea: reason graphically

= equational theory (e.g. = —)
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Circuit Equivalence

Problem of circuit equivalence

Do two given circuits implement the same operator?

e Decidable: compute the matrices!
e But hard: QMA-hard (quantum equivalent of NP-hard)
e Other (better?) idea: reason graphically

= equational theory (e.g. = —)

New problem: Completeness

Do we have enough axioms in the equational theory?

e 1-qubit Clifford+T fragment [Backens’14] e {CNot, T} [Amy,Chen,Ross’18]

e Clifford fragment [Selinger’15] e approx. universal fragment: open
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Circuit Equivalence

Problem of circuit equivalence

Do two given circuits implement the same operator?

e Decidable: compute the matrices!
e But hard: QMA-hard (quantum equivalent of NP-hard)
e Other (better?) idea: reason graphically

= equational theory (e.g. = —)

New problem: Completeness

Do we have enough axioms in the equational theory?

e 1-qubit Clifford+T fragment [Backens’14] e {CNot, T} [Amy,Chen,Ross’18]

e Clifford fragment [Selinger’15] e approx. universal fragment: open

What if we dropped the unitarity constraint?
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ZX-Calculus: Origins

e Was introduced by Coecke and Duncan in 2008
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e Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke’04)
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ZX-Calculus: Origins

e Was introduced by Coecke and Duncan in 2008

e Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke’04)

N[

e Manipulates string diagrams e.g.
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Was introduced by Coecke and Duncan in 2008

Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke’04)
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Manipulates string diagrams e.g.

Describes complementary Frobenius algebras

Has a powerful equational theory e.g. =
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ZX-Calculus: Origins

Was introduced by Coecke and Duncan in 2008

Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke’04)

2
Manipulates string diagrams e.g.

Describes complementary Frobenius algebras
Has a powerful equational theory e.g. =

Represents quantum circuits and more
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The Generators

z
10 -+ .- 0
00
e A spider: oom : :
0 0
0. - --- 0 e«

=[0m)07] e [1m) (1]
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The Generators
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The Generators

z
; 10 -+« --- 0
00 :
e A spider: xa oom : : x = x)
cee : 0 ) cee coe
m 0 -« --- 0 e«

=l0m)0r|--eie 17)(17

e A change of basis: + :: % G _11>
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The Generators

z
; 10 -+« --- 0
00 :
e A spider: xa oom : : x = X)
cee : 0 ) cee coe
m 0 -« --- 0 e«

e A change of basis: + :: % G _11>

e Another spider: >‘<a =

ZX-Calculus Renaud Vilmart January 19th, 2021 |13)(31|

B S S il eI Gl

:
T



The Generators

z
; 10 -+« --- 0
00 :
e A spider: xa oom : : X = X)
cee : 0 ) cee coe
m 0 -« --- 0 e«

e A change of basis: + :: % G _11>

e Another spider: >‘<a = % Y () 4 e [ —my (| X — X)
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2
. 10 -+« --- 0
cee Q 0 .
A spider: a :oom :
: 0
m 0------ 0 e“

. o (1T
A change of basis: + .. %(1 _1>

Another spider: >‘<Oé =

100

Prace . (10 . 1001
Wires: ‘ i (O 1), >< o (()10
000

ZX-Calculus

—'n/Q\n'—

o000

)~
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The Generators
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Intuition Behind the Generators

One-qubit Operators

Z(a): +a Hadamard: + X(a): +a — @«
rotation around Z = HZ(a)H

ZX-Calculus Renaud Vilmart January 19th, 2021 | 14)(31|



Intuition Behind the Generators

One-qubit Operators

Z(a): +a Hadamard: + X(a): +a — @«
rotation around Z = HZ(a)H

States and Projectors

v2[0): @ vil1): @ |00) + [11): /7 (00| + (11]: \_J
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Intuition Behind the Generators

One-qubit Operators

Z(a): +a Hadamard: + X(a): +a — @«
rotation around Z = HZ(a)H

States and Projectors
v2[0): @ vi[1): @ |00) 4 [11): /7 (00| + (11]: \LJ
Green Spider

k
Copy: /‘\ s.t. {:\ = ?kw ?kw
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Intuition Behind the Generators

One-qubit Operators

Z(a): +a Hadamard: + X(a): +a = @«
rotation around Z = HZ(a)H

States and Projectors
v2[0): @ vi[1): @ |00) 4 [11): /7 (00| + (11]: \LJ
Green Spider

o 851 8, - oo Bh=| | 4 8
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Intuition Behind the Generators

One-qubit Operators

Z(a): +a Hadamard: + X(a): +a = @«
rotation around Z = HZ(a)H

States and Projectors
v2[0): @ vi[1): @ |00) 4 [11): /7 (00| + (11]: \LJ
Green Spider

o 851 8, - oo Bh=| | 4 8

Red Spider

km @..@ knm Sk
i
XOR V S.t. —_— ’j J
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Intuition Behind the Generators

One-qubit Operators

Z(a): +a Hadamard: + X(a): +o¢ = @«
rotation around Z = HZ(a)H

States and Projectors
v2[0): @ vi[1): @ |00) 4 [11): /7 (00| + (11]: \LJ
Green Spider

o 851 8, - oo Bh=| | 4 8

Red Spider

k17rQ§’knﬂ' i
XOR: _ _, [ —
Vo mem - [ [,
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Generators

ZX-Calculus

ZX-Calculus [Coecke,Duncan’08] in Short

Renaud Vilmart
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ZX-Calculus [Coecke,Duncan’08] in Short

Generators

B I

ZX-Calculus

Compositions
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ZX-Calculus [Coecke,Duncan’08] in Short

Generators

S VA .

Compositions

[ oo | [ oo | [ oo | ] e |
[ D Jel D, | = [ D |[ D |
|...| |...| |...| |...|

Standard Interpretation
[.]:ZX - M(C)
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ZX-Calculus [Coecke,Duncan’08] in Short

Generators

S VA .

Compositions

[ D J®[D: | = [ D || D |
Standard Interpretation Example

[]: ZX — M(C) @ m
/[
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Generators
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Standard Interpretation Example
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ZX-Calculus [Coecke,Duncan’08] in Short

Generators

S VA .

Compositions

[ D J®[D: | = [ D || D |
Standard Interpretation Example

112X M(©) = ([l te1) (I8 ]=[D)
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ZX-Calculus [Coecke,Duncan’08] in Short

Generators

Standard Interpretation Example

[.] : ZX — M(C) (
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Quantum Circuits to ZX-Diagrams

H
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Quantum Circuits to ZX-Diagrams

ZX-Calculus

1 -t

H
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Quantum Circuits to ZX-Diagrams

H

&y |- e
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Expressiveness

Theorem (Universality)

We can represent any quantum operator using ZX-diagrams:

n n

m

Vf:C¥ ¥, 3
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Expressiveness

Theorem (Universality)

We can represent any quantum operator using ZX-diagrams:

n n

m

Vf:C¥ ¥, 3

m m
aq
a2
E.g. Iff C? — Cz, daj, a3 Qq :f
a5
(&73
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Equational Theory (the Backbone)
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Equational Theory (the Backbone)
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Equational Theory (the Backbone)

Only Connectivity Matters

ZX-diagrams can be seen as open graphs. Any graph iso-
morphism is a valid derivation in the equational theories.
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Equational Theory (the Backbone)

Only Connectivity Matters 3 .
— 2
ZX-diagrams can be seen as open graphs. Any graph iso- Eg a
morphism is a valid derivation in the equational theories.
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Equational Theory
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Equational Theory

) +

W >'< +@
2

—~~~
cll

aq ,31
) >‘< (HD) o (EV) O

Bi=f(ai)

We write ZX = Dy = D,. Every colour-swapped rule holds.
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Understanding the Rules: the Spiders

>\®<ﬁ ® >'<5
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Understanding the Rules: the Spiders

a+B : comes from the study of {-Frobenius algebras in C2.
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Understanding the Rules: the Spiders

a+B : comes from the study of {-Frobenius algebras in C2.

+ < rotation of angle 0

(Ie) ‘ (i)

= @ : change of basis
(i >‘<
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Understanding the Rules: Copy and Bialgebra
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Understanding the Rules: Euler Angles

Rotations in R3:
VG, ElO[,', R?(Q) = RX(Oég) e} Ry(Oéz) e} RX(Oé])
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Also true for U(2) i.e. any 1-qubit unitary can be decomposed as:
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Understanding the Rules: Euler Angles

Rotations in R3:
VG, Ela,-, R?(Q) = RX(Oég) e} Ry(Oéz) e} RX(Oq)

Also true for U(2) i.e. any 1-qubit unitary can be decomposed as:

& B
a2 = ﬂZ with /Bi :f(ai)
a3 (EU) B3
2
l%l represents a 1-qubit unitary: (H:D) z
2
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Using the Rules: The EPR Pair
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Completeness

Theorem [V.19]

The language is complete:

VDy, D, € ZX, [[D1]] = [[Dz]] <— ZXE D; =D,
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Completeness

Theorem [V.19]

The language is complete:

VDy, D, € ZX, [[D1]] = [[Dz]] <— ZXE D; =D,

Previous/other completeness results:
o 7-fragment [Backens’14]
e m-fragment [Duncan,Perdrix’14]
e 1-qubit 7-fragment [Backens’14]
o 7 -fragment [Jeandel,Perdrix,V.18]
o full ZX (modified) [Hadzihasanovic,Ng,Wang 18]
e full ZX [Jeandel,Perdrix,V. 18]
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Sketch of (a) proof: Normal Forms

e Main idea: notion of controlled state:
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Sketch of (a) proof: Normal Forms

e Main idea: notion of controlled state:
1T o
Ay = V2" [+70] + )] = |+ 0 | e
1 g

suchthat = ?? and =

e Base case: controlled scalar:
Ax = (0] +x (1] = (1 x)
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Constructions on Controlled states
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Constructions on Controlled states

= A0, %) +1,0)|

with ~|_‘J__> =
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The Normal Form

e Generators can be put in NF

e Compositions of states in NF can be
put in NF

e Completeness on controlled scalars

4

Completeness!

4 A} 4 A}
[Avo][Apr | [Adha | [Agis]
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Conclusion

Graphical language

e visualises information flow
e laxer than circuits
e powerful & intuitive equational theory

Universal
Several completeness results

Cousin languages ZW and ZH
Unifies different models of quantum computation
e Gaining traction as the default language for describing quantum processes

Used for optimisation (PyZX)

Used for verification (Quantomatic)
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