Practical Fully Secure Inner Product
Functional Encryption modulo p

Guilhem Castagnos' Fabien Laguillaumie? Ida Tucker?

TUniversité de Bordeaux, INRIA, CNRS, IMB UMR 5251,
F-33405 Talence, France.

2Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon,
INRIA, LIP UMR 5668, F-69007, LYON Cedex 07, France.

Table of contents

1. Functional Encryption (FE)

2. The Inner Product Functionality

3. The Hard Subgroup Membership (HSM) Assumption

4. Linearly Homomorphic Public Key Encryption mod p from HSM

5. Inner Product Functional Encryption mod p from HSM

Functional Encryption (FE)

Traditional Encryption: All or Nothing

Alice
m (Dkam‘y 5|<D<JM)

Traditional Encryption: All or Nothing

Alice

P K Bob

A

Traditional Encryption: All or Nothing

Alice

P K Bob

A

€ = Enc(pkgop, M)

v

Traditional Encryption: All or Nothing

Alice -

m (Dkam‘y 5|<D<JM)
pkﬁz}f,}

A

€ = Enc(pkgop, M)

»
»

m = Dec(skggp, C)

Traditional Encryption: All or Nothing

Alice
m
pkﬁz}f,}
C = Enc(pkgop, M) ;

v

m = Dec(skggp, C)

Bob gets all the information in m.

Fine Grained Access to Info with Traditional Encryption

s I

Fine Grained Access to Info with Traditional Encryption

1
©
~
N
wn
~
o

?3]
O

W/T

BO

Fine Grained Access to Info with Traditional Encryption

: &)

0= pky, sk
C, = Enc(pk,, my)
C3 = Enc(pks, m3) Pks, sks
Cy = Enc(pk,, ms4)
Cs = Enc(pk,, my)

CQ-, C5

Ideal Fine Grained Access to Information

m, = Dec(sk, C) .O.
I:I_E sk,
pk,m B 9
C = Enc(pk, m) m3 = Dec(sks, C)

m,, = Dec(sks, C)

m, = Dec(sk,, C) ()

Functional Encryption

s M1

G

S |<FZ

2

ske

3

Sk, , Sk, 5

Functional Encryption

F,(m) = Dec(skg,, C) O

Ij_E SkFZ
m f—
C = Enc(pk, m) F3(m) = Dec(ske, g?

Sl(F

&

Sk, , Sk, 5

)
F,(m) = Dec(skg,, C)
F>(m) = Dec(skg,, C)

—~

Application: Spam filtering for encrypted emails

mpk, msk

(" e-mailserver |

F(m) =1 if mis spam
0 otherwise

Application: Spam filtering for encrypted emails

I

mpk, msk
/,,,1/ == \‘L— \A%

e-mail server X

F s k F ‘,,/\:

AL

F(m) =1 if mis spam
0 otherwise

Application: Spam filtering for encrypted emails

sk

Application: Spam filtering for encrypted emails
D6

C = Enc(mpk, m)

" e-mail server
F, Sl(F

N6

C* = Enc(mpk, m*)

Application: Spam filtering for encrypted emails

\C

" e-mail server
F, Sl(F

YA
>

Application: Spam filtering for encrypted emails

Dec(skr,C) =0

Dec(skg, C*) =1
E@ \i

" e-mail server

F, Sl(F

YA
>

Application: Spam filtering for encrypted emails

Dec(skr,C) =0

Dec(skg, C*) =1
E@ \i

e-mail server

Fske)
% -

inbox quarantine

e-malil server learns one bit of information

Functional Encryption [BSW11]

m Setup Function F

(mpk, msk)

Functional Encryption [BSW11]

m Setup Function F

mpk (mpk, msk)
C = Enc (mpk, m)

Functional Encryption [BSW11]

Alice

C = Enc (mpk, m)

Setup Function F
(mpk, msk) b
»
skr =KeyDer(msk,F) —» sk

skr

Functional Encryption [BSW11]

m Setup Function F
(mpk, msk)
C = Enc (mpk, m) ske =KeyDer(msk,F) ski
c

» F(m) = Dec(skg,C)

Bob only learns F(m).

FE Security — Indistinguishability

Adv
mpk, msk «— Setup
mpk
F
707/\/'1
b* & {0,1}
«C C* <«— Enc(mpk,Mp.)
_|b

FE Security — Indistinguishability

mpk, msk «— Setup

Enc(mpk, Mp-)

Limits of General Functional Encryption

We don’t know how to build practical FE for general functions

Limits of General Functional Encryption

We don’t know how to build practical FE for general functions

= Linear Functions: simple with many applications

Limits of General Functional Encryption

We don’t know how to build practical FE for general functions
= Linear Functions: simple with many applications

- Understand general FE

- Statistical analysis on encrypted data

- Evaluation of polynomials over encrypted data
- Constructing trace-and-revoke system

- etc.

The Inner Product Functionality

The inner product functionality

Setup
(mpk, msk)
% . X, sk
C = Enc (mpk,) > (X,y) = Dec(skg,C)
FoiRES R

y = (XY

Previous work

Schemes mod p do not recover
large inner products

or are inefficient.

PKC 2015 Crypto 2016 2016 PKC 2017

[ABDP15] [ALS16] [ABCP16] [BBL17]
First IPFE schemes, Full security, Full security, Generic
from LWE and DDH, from LWE, less efficient constructions

only selectively secure. DDH and DCR. than [ALS16]. from HPS.

Previous work

Schemes mod p do not recover

large inner products

or are inefficient.

PKC 2015

Crypto 2016

[ABDP15]
First IPFE schemes,
from LWE and DDH,

only selectively secure.

[ALS16]
Full security,
from LWE,
DDH and DCR.

2016 PKC 2017 Asiacrypt 2018
[ABCP16] [BBL17] This work:
Full security, Generic IPFE mod p
less efficient constructions adaptive security
than [ALS16]. from HPS. no restriction on size

and efficient!

The Hard Subgroup Membership
(HSM) Assumption

Framework (sketch) [CL15]

Group with an easy discrete logarithm (DL) subgroup

- G = (g) cyclic group of order p - s such that gcd(p,s) = 1.
- p large prime

- F = {f) subgroup of G of order p.

- GP = (gp) = {xP,x € G} subgroup of G of order s,

G=FxGP.

- DLiseasyinF (DL: given f and h = f*, find x € Z/pZ)

New Assumption

Hard Subgroup Membership problem HSM:
Hard to distinguish p-th powers in G
x &6~ (x &GP

Instantiation in class groups of an imaginary quadratic field

- K=Q(VAx), Ak <0and Ak =1 mod 4

Instantiation in class groups of an imaginary quadratic field

- K=Q(VAx), Ak <0and Ak =1 mod 4
- Op, and Op, st. Ax = —pq, A, = —gp> with p, g primes

Instantiation in class groups of an imaginary quadratic field

- K=Q(VAx), Ax < 0and Ax =1 mod 4

- Op, and Op, st. Ax = —pq, A, = —gp> with p, g primes

© ¢p : C(Oa,) — C(Oa,) surjection where Ker(¢,) of order p.
- Implies h(Oa,) = p x h(Oa,)

Instantiation in class groups of an imaginary quadratic field

- K=Q(VAx), Ax < 0and Ax =1 mod 4
- Op, and Op, st. Ax = —pq, A, = —gp> with p, g primes
© ¢p : C(Oa,) — C(Oa,) surjection where Ker(¢,) of order p.
- Implies h(Oa,) = p x h(Oa,)
- aideal of Oa can be written as a = (aZ + _b%\/zZ) and
represented by (a,b); fora € N,b € Z,b> = A mod 4a

Instantiation in class groups of an imaginary quadratic field

« t=(p%p) € On,, setf =i
= f generates Ker(¢p) (subgroup of order p of C(Oa,,)), and

=L VA

2

L(m): odd integer in [-p, p] st. L(m) =1/m mod p
F =< f > cyclic group of order p, and DL easy

14

Instantiation in class groups of an imaginary quadratic field

« t=(p%p) € On,, setf =i
= f generates Ker(¢p) (subgroup of order p of C(Oa,,)), and

=L VA

2

L(m): odd integer in [-p, p] st. L(m) =1/m mod p
F =< f > cyclic group of order p, and DL easy
- To build GP:
cgé C(Oa,) of order s|h(Oa,).
- ged(p, h(Oa,)) = 1= ged(p,s) =1
“ gp = (95 '(9)) € C(On,)

14

Instantiation in class groups of an imaginary quadratic field

« t=(p%p) € On,, setf =i
= f generates Ker(¢p) (subgroup of order p of C(Oa,,)), and
—L /A

2

L(m): odd integer in [-p, p] st. L(m) =1/m mod p
F =< f > cyclic group of order p, and DL easy
- To build GP:
cgé C(Oa,) of order s|h(Oa,).
- ged(p, h(Oa,)) = 1= ged(p,s) =1
g = (65 (9)) € C(Oa,)
- Setg=g,-fand G=< g > of order ps

14

Security in class groups of an imaginary quadratic field

- Security from hardness of class number computation and DL
problem in C(Ox,).
- Best known algos use index calculus method
= L(1/2) complexity

- Shorter keys!

A=112 A =128
size this work DCR this work DCR
(p,3) (112,684) (1024,2046) (128,924) (1536,3070)
ell of G 1572 4096 2084 6144

secretkey — 112(+1)+ 684 2048(¢+2) 128(0+1)+924 3072(£+2)

Sampling exponents

s unknown, so orders of GP and G unknown
= Cannot sample uniformly from G or GP!

Sampling exponents

s unknown, so orders of GP and G unknown
= Cannot sample uniformly from G or GP!

- Bound on h(Oa,) = upper bound s for s

- Use § to instantiate distributions D and Dp sit.
{g",x <= D} = U(G),

and {gp,Xx <> Dp} = U(GP)

- In practice: D and D, folded gaussian distributions with large
standard deviation.

Linearly Homomorphic Public Key
Encryption mod p from HSM

Homomorphic PKE scheme mod p from HSM

Homomorphic PKE scheme mod p from HSM

KeyGen Samplet <« D, and compute h= g},
sk=t and pk=h

Homomorphic PKE scheme mod p from HSM

KeyGen Samplet <— D, and compute

sk=t and pk=h

h =g,

Ciphertext:

Enc Plaintext: m € Z/pZ
Sample randomness r <= D,

(Co, C1) = (gp,f™ - h")

Security

This scheme is semantically secure under the
HSM assumption.

Game 0: the original security experiment

Adv
pk
Mo, My $
b* < {0,1}
r < Dy
Co, C :
(0, W) :(Q[rycwzfmb*'h')
b
Output (b = b*)

Game 0 is the original security experiment.

Game 1: sample t from D

Adv

—

pk
Mo, My $
b* <& {0,1}
r < Dy
Co, C)
(05 W) Z(QE,CWmeb*'h')
b
Output (b = b*)

From A's view, Games 0 and 1 are identical.

19

Game 2: use sk to compute (Cy, Cy)

Adv

—

pk

Mo, My

(Co, 1)

b* & {0,1}
r < Dy

= (gp,

Output (b = b*)

From A's view, Games 1 and 2 are identical.

20

Game 3: compute Cy € G\G

Adv
pk
Mo, My
(G, ¢ fme . L)
b
Output (b = b*)

Games 2 and 3 are undistinguishable to A

under the HSM assumption.
21

Game 3: compute Cy € G\G

Adv
pk
Mo, My
(G, ¢ fme . L)
b
Output (b = b*)

Games 2 and 3 are undistinguishable to A

under the HSM assumption.
21

Game 3: compute Cy € G\G

Adv
pk
Mo, My
(CO;CW) fmw . Cé)
b
Output (b = b*)

Games 2 and 3 are undistinguishable to A

under the HSM assumption.
21

Game 3: compute Cy € G\G

(Adv)
pk
Mo, My
(Co, C1) fmes+ut . pr)
b
) Output (b = b*)

Games 2 and 3 are undistinguishable to A

under the HSM assumption.
21

Inner Product Functional
Encryption mod p from HSM

IPFE scheme mod p from HSM (simplified)

IPFE scheme mod p from HSM (simplified)

[Setup Sample t = (t;,...,t) compute h; =gy fori:1,...,€}
msk =t and mpk = (hy,...,hy)

IPFE scheme mod p from HSM (simplified)

[Setup Sample t = (t;,...,t) compute h; =gy fori=1,....0

L msk =t and mpk = (hy,...,hy)
(Enc Plaintext: ¥ = (1, ...,ys) € (Z/pZ)*
Sample randomness r
Ciphertext:
C=(Co=ghCi=F" h,...,Co=F-h})
-

J

-

J

IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)

IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)

IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)

IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)

IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)

IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)

IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)

Security

This scheme is secure under the HSM
assumption.

Proof technique

-

C = (CO = gENC] :fyfﬂ,w . hq7.'.7cz :fy“*‘l . h;)

- Game 0 original security game

23

Proof technique

-

C=(Co=gh,Cr=fl-Cl,...,Co= e - CY)

- Game 0 original security game
- Game 1 use secret key to compute challenge ciphertext

23

Proof technique

C=(Co=gpf* Cr=Fr - Cl,..., Co=Pre - CY)

- Game 0 original security game
- Game 1 use secret key to compute challenge ciphertext

- Game 2 indistinguishable from Game 1 under the HSM
assumption.

23

Proof technique

C=(Co=gpf* Cr=Fr - Cl,..., Co=Pre - CY)

- Game 0 original security game
- Game 1 use secret key to compute challenge ciphertext

- Game 2 indistinguishable from Game 1 under the HSM
assumption.

In Game 2, from A’s view b* is statistically hidden, given

- the public key
- the challenge ciphertext

- key derivation queries

23

Efficiency comparison

A =112,£=10 A =128,£=10

this work [ALS16] this work [ALS16]

Ske bitsize 1920 24592 2340 36876
Enc time 40ms 27ms 78ms 85ms
Dec time 110ms 301ms 193ms 964ms

Dependency in £ is linear.

24

Last slide!

Conclusion

- Most efficient IPFE schemes to date
- First IPFE mod a prime that recover the result whatever its size.
- Interesting framework, can be applied to other primitives.

Ongoing work
- Chosen Ciphertext Attack Secure schemes
- Threshold ECDSA using our underlying framework

25

Questions?

@ M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval.

Better security for functional encryption for inner product
evaluations.

Cryptology ePrint Archive, Report 2016/011, 2016.
http://eprint.iacr.org/2016/011.

M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval.
Simple functional encryption schemes for inner products.
In PKC 2015, LNCS 9020, pages 733-751. Springer, Heidelberg,
March / April 2015.

S. Agrawal, B. Libert, and D. Stehlé.

Fully secure functional encryption for inner products, from
standard assumptions.

In CRYPTO 2016, Part Ill, LNCS 9816, pages 333-362. Springer,
Heidelberg, August 2016.

F. Benhamouda, F. Bourse, and H. Lipmaa.
CCA-secure inner-product functional encryption from projective
hash functions.

In PKC 2017 Part I, LNCS 10175, pages 36-66. Springer, Heidelberg,
March 2N17

26

http://eprint.iacr.org/2016/011

Information A gets on b* in PKE

Mp+ +U-t mod p

27

Information A gets on b* in PKE

Mp+ +U-t mod p

Where:
(1) u#0 mod p with proba Dwa ~ 1

27

Information A gets on b* in PKE

Mp+ +U-t mod p

Where:
(1) u 0 mod p with proba DT*W ~ 1
and

(2) t sampled from D, folded gaussian, (almost) uniform mod s - p

27

Information A gets on b* in PKE

Mp+ +U-t mod p

Where:
(1) u 0 mod p with proba DT*W ~ 1
and

(2) t sampled from D, folded gaussian, (almost) uniform mod s - p

l

Distribution of t (almost) uniform mod p and mod s
and (t mod p) independent of (t mod s)

27

Information A gets on b* in PKE

Mp+ +U-t mod p

Where:
(1) u 0 mod p with proba DT*W ~ 1
and

(2) t sampled from D, folded gaussian, (almost) uniform mod s - p

l

Distribution of t (almost) uniform mod p and mod s
and (t mod p) independent of (t mod s)

|

u - t perfectly masks my. mod p

27

Game 0: the original security experiment

Adv

—

€ = (Co= g5, &1 = -,
L ..., Co=fYe -)

4 0] N
utput (b = b*)

Game 0 is the original security experiment.
28

Game 1: use msk to compute C*

Adv

- Output (b = b*
\) utput (b = b")

From A's view, Games 0 and 1 are identical.
29

Game 2: compute Cy € G\G

Adv

'C1 :f)h "Célw
— o, Co=fre . C)

- Output (b = b*
\) utput (b = b")

Games 1 and 2 are undistinguishable to A
under the HSM assumption. 30

Leaked Information in Game 2

We consider the information leaked on b* by:

- the public key
- the challenge ciphertext
- key derivation queries

31

Information fixed by public key

mpk = {h; = g5 ™" }icqg

32

Information fixed by public key

mpk = {h; = g5 ™" }icqg

Fixes

32

Information fixed by public key

mpk = {h; = g5 ™" }icqg

Fixes

32

Information fixed by challenge ciphertext

5* = (Co = glf) o 7, {C,~ = fYor.i . Cy }ie[é])

33

Information fixed by challenge ciphertext

5* = (Co = glf) o 7, {C,~ = fYor.i . Cy }ie[é])

Reveals

|

C[= g;‘ mod s .fyb*,d’u"‘ mod p

33

Information fixed by challenge ciphertext

5* = (Co = glf) o 7, {C,~ = fYor.i . Cy }ie[é])

Reveals

|

C[= g;‘ mod s .fyb*,d’u"‘ mod p

Fixes

|

Yo + ut mod p

33

Information fixed by key derivation oracle

For X such that (X, Vo) = (X,;) mod p:

sky = (£,X) mod p

34

Information fixed by key derivation oracle

For X such that (X, Vo) = (X,;) mod p:

sky = (£,X) mod p
Reveals all the information on t for directions L to y; — Va.

Vi — Yo

34

Information fixed by key derivation oracle

For X such that (X, Vo) = (X,;) mod p:

sky = (£,X) mod p
Reveals all the information on t for directions L to y; — Va.

Vi — Yo

Remaining entropy on t contained in (t,yo — v3)

34

A's success probability

From A’s view, (, o — V) follows a distribution ~ 1/(Z/pZ).

35

A's success probability

From A’s view, (, o — V) follows a distribution ~ 1/(Z/pZ).

The ciphertext reveals:
V= + ut mod p

35

A's success probability

From A’s view, (, o — V) follows a distribution ~ 1/(Z/pZ).

The ciphertext reveals:
Yo« + ut mod p

The information on b* is contained in:

(Ve Yo — Y1) + u(t, o — y2) mod p

35

A's success probability

From A’s view, (, o — V) follows a distribution ~ 1/(Z/pZ).

The ciphertext reveals:
Yo« + ut mod p

The information on b* is contained in:

(Voe» Yo — V1) + u(t, o — ¥1) mod p
A cannot guess b* with proba > 1/2 + negl

35

	Functional Encryption (FE)
	The Inner Product Functionality
	The Hard Subgroup Membership (HSM) Assumption
	Linearly Homomorphic Public Key Encryption mod p from HSM
	Inner Product Functional Encryption mod p from HSM

