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Traditional Encryption: All or Nothing

Alice
m
pkﬁz}f,}
C = Enc(pkgop, M) ;

v

m = Dec(skggp, C)

Bob gets all the information in m.
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Fine Grained Access to Info with Traditional Encryption

: &)

0= pky, sk
C, = Enc(pk,, my)
C3 = Enc(pks, m3) Pks, sks
Cy = Enc(pk,, ms4)
Cs = Enc(pk,, my)

CQ-, C5



Ideal Fine Grained Access to Information

m, = Dec(sk, C) .O.
I:I_E sk,
pk,m B 9
C = Enc(pk, m) m3 = Dec(sks, C)

m,, = Dec(sks, C)

m, = Dec(sk,, C) ()
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Functional Encryption

F,(m) = Dec(skg,, C) O

Ij_E SkFZ
m f—
C = Enc(pk, m) F3(m) = Dec(ske, g?
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F,(m) = Dec(skg,, C)
F>(m) = Dec(skg,, C)
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Application: Spam filtering for encrypted emails
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Application: Spam filtering for encrypted emails

Dec(skr,C) =0

Dec(skg, C*) =1
E@ \i

e-mail server

Fske )
% -

inbox  quarantine

e-malil server learns one bit of information
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Functional Encryption [BSW11]
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Functional Encryption [BSW11]

m Setup Function F
(mpk, msk)
C = Enc (mpk, m) ske =KeyDer(msk,F) ski
c

» F(m) = Dec(skg,C)

Bob only learns F(m).



FE Security — Indistinguishability

Adv
mpk, msk «— Setup
mpk
F
707/\/'1
b* & {0,1}
«C C*  <«— Enc(mpk,Mp.)
_|b




FE Security — Indistinguishability

mpk, msk «— Setup

Enc(mpk, Mp-)
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Limits of General Functional Encryption

We don’t know how to build practical FE for general functions
= Linear Functions: simple with many applications

- Understand general FE

- Statistical analysis on encrypted data

- Evaluation of polynomials over encrypted data
- Constructing trace-and-revoke system

- etc.



The Inner Product Functionality



The inner product functionality

Setup
(mpk, msk)
% . X, sk
C = Enc (mpk, ) > (X,y) = Dec(skg,C)
FoiRES R

y = (XY



Previous work

Schemes mod p do not recover
large inner products

or are inefficient.

PKC 2015 Crypto 2016 2016 PKC 2017

[ABDP15] [ALS16] [ABCP16] [BBL17]
First IPFE schemes, Full security, Full security, Generic
from LWE and DDH, from LWE, less efficient  constructions

only selectively secure. DDH and DCR. than [ALS16]. from HPS.



Previous work

Schemes mod p do not recover

large inner products

or are inefficient.

PKC 2015

Crypto 2016

[ABDP15]
First IPFE schemes,
from LWE and DDH,

only selectively secure.

[ALS16]
Full security,
from LWE,
DDH and DCR.

2016 PKC 2017 Asiacrypt 2018
[ABCP16]  [BBL17] This work:
Full security, Generic IPFE mod p
less efficient  constructions adaptive security
than [ALS16].  from HPS. no restriction on size

and efficient!



The Hard Subgroup Membership
(HSM) Assumption



Framework (sketch) [CL15]

Group with an easy discrete logarithm (DL) subgroup

- G = (g) cyclic group of order p - s such that gcd(p,s) = 1.
- p large prime

- F = {f) subgroup of G of order p.

- GP = (gp) = {xP,x € G} subgroup of G of order s,

G=FxGP.

- DLiseasyinF (DL: given f and h = f*, find x € Z/pZ)



New Assumption

Hard Subgroup Membership problem HSM:
Hard to distinguish p-th powers in G
x &6~ (x &GP
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Instantiation in class groups of an imaginary quadratic field

- K=Q(VAx), Ax < 0and Ax =1 mod 4
- Op, and Op, st. Ax = —pq, A, = —gp> with p, g primes
© ¢p : C(Oa,) — C(Oa,) surjection where Ker(¢,) of order p.
- Implies h(Oa,) = p x h(Oa,)
- aideal of Oa can be written as a = (aZ + _b%\/zZ) and
represented by (a,b); fora € N,b € Z,b> = A mod 4a



Instantiation in class groups of an imaginary quadratic field

« t=(p%p) € On,, setf =i
= f generates Ker(¢p) (subgroup of order p of C(Oa,,)), and
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=L VA

2

L(m): odd integer in [-p, p] st. L(m) =1/m mod p
F =< f > cyclic group of order p, and DL easy
- To build GP:
cgé C(Oa,) of order s|h(Oa,).
- ged(p, h(Oa,)) = 1= ged(p,s) =1
“ gp = (95 '(9)) € C(On,)
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Instantiation in class groups of an imaginary quadratic field

« t=(p%p) € On,, setf =i
= f generates Ker(¢p) (subgroup of order p of C(Oa,,)), and
—L /A

2

L(m): odd integer in [-p, p] st. L(m) =1/m mod p
F =< f > cyclic group of order p, and DL easy
- To build GP:
cgé C(Oa,) of order s|h(Oa,).
- ged(p, h(Oa,)) = 1= ged(p,s) =1
g = (65 (9)) € C(Oa,)
- Setg=g,-fand G=< g > of order ps

14



Security in class groups of an imaginary quadratic field

- Security from hardness of class number computation and DL
problem in C(Ox,).
- Best known algos use index calculus method
= L(1/2) complexity

- Shorter keys!

A=112 A =128
size this work DCR this work DCR
(p,3) (112,684)  (1024,2046) (128,924)  (1536,3070)
ell of G 1572 4096 2084 6144

secretkey — 112(+1)+ 684  2048(¢+2) 128(0+1)+924  3072(£+2)




Sampling exponents

s unknown, so orders of GP and G unknown
= Cannot sample uniformly from G or GP!



Sampling exponents

s unknown, so orders of GP and G unknown
= Cannot sample uniformly from G or GP!

- Bound on h(Oa,) = upper bound s for s

- Use § to instantiate distributions D and Dp sit.
{g",x <= D} = U(G),

and {gp,Xx <> Dp} = U(GP)

- In practice: D and D, folded gaussian distributions with large
standard deviation.



Linearly Homomorphic Public Key
Encryption mod p from HSM
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Homomorphic PKE scheme mod p from HSM

KeyGen Samplet <— D, and compute

sk=t and pk=h

h =g,

Ciphertext:

Enc Plaintext: m € Z/pZ
Sample randomness r <= D,

(Co, C1) = (gp,f™ - h")




Security

This scheme is semantically secure under the
HSM assumption.



Game 0: the original security experiment

Adv
pk
Mo, My $
b* < {0,1}
r < Dy
Co, C :
( 0, W) :(Q[rycwzfmb*'h')
b
Output (b = b*)

Game 0 is the original security experiment.



Game 1: sample t from D

Adv

—

pk
Mo, My $
b* <& {0,1}
r < Dy
Co, C )
( 05 W) Z(QE,CWmeb*'h')
b
Output (b = b*)

From A's view, Games 0 and 1 are identical.

19



Game 2: use sk to compute (Cy, Cy)

Adv

—

pk

Mo, My

(Co, 1)

b* & {0,1}
r < Dy

= (gp,

Output (b = b*)

From A's view, Games 1 and 2 are identical.

20



Game 3: compute Cy € G\G

Adv
pk
Mo, My
(G, ¢ fme . L)
b
Output (b = b*)

Games 2 and 3 are undistinguishable to A

under the HSM assumption.
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Game 3: compute Cy € G\G

Adv
pk
Mo, My
(CO;CW) fmw . Cé)
b
Output (b = b*)
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Game 3: compute Cy € G\G

(Adv )
pk
Mo, My
(Co, C1) fmes+ut . pr)
b
) Output (b = b*)

Games 2 and 3 are undistinguishable to A

under the HSM assumption.
21



Inner Product Functional
Encryption mod p from HSM
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IPFE scheme mod p from HSM (simplified)

[ Setup Sample t = (t;,...,t) compute h; =gy fori=1,....0

L msk =t and mpk = (hy,...,hy)
(Enc Plaintext: ¥ = (1, ...,ys) € (Z/pZ)*
Sample randomness r
Ciphertext:
C=(Co=ghCi=F" h,...,Co=F-h})
-

J

-

J
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IPFE scheme mod p from HSM (simplified)

Setup Samplet = (t;,...,t) compute

msk =t and mpk = (h,..

hi =gy fori=1,...,¢
-, he)

Enc Plaintext: y = (y1,...,Vs) € (Z/p2)"
Sample randomness r
Ciphertext:

6:(CO:g£,C1:fyw'h!I,7""

Co=1""hy)

KeyDer Input: X = (x1,...,X) € (Z/pZ)*

Output key: sky = (£, %)




Security

This scheme is secure under the HSM
assumption.



Proof technique
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- Game 0 original security game
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Proof technique

C=(Co=gpf* Cr=Fr - Cl,..., Co=Pre - CY)

- Game 0 original security game
- Game 1 use secret key to compute challenge ciphertext

- Game 2 indistinguishable from Game 1 under the HSM
assumption.

In Game 2, from A’s view b* is statistically hidden, given

- the public key
- the challenge ciphertext

- key derivation queries

23



Efficiency comparison

A =112,£=10 A =128,£=10

this work [ALS16] this work [ALS16]

Ske bitsize 1920 24592 2340 36876
Enc time 40ms 27ms 78ms 85ms
Dec time 110ms 301ms 193ms 964ms

Dependency in £ is linear.

24



Last slide!

Conclusion

- Most efficient IPFE schemes to date
- First IPFE mod a prime that recover the result whatever its size.
- Interesting framework, can be applied to other primitives.

Ongoing work
- Chosen Ciphertext Attack Secure schemes
- Threshold ECDSA using our underlying framework

25
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@ M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval.

Better security for functional encryption for inner product
evaluations.

Cryptology ePrint Archive, Report 2016/011, 2016.
http://eprint.iacr.org/2016/011.

M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval.
Simple functional encryption schemes for inner products.
In PKC 2015, LNCS 9020, pages 733-751. Springer, Heidelberg,
March / April 2015.

S. Agrawal, B. Libert, and D. Stehlé.

Fully secure functional encryption for inner products, from
standard assumptions.

In CRYPTO 2016, Part Ill, LNCS 9816, pages 333-362. Springer,
Heidelberg, August 2016.

F. Benhamouda, F. Bourse, and H. Lipmaa.
CCA-secure inner-product functional encryption from projective
hash functions.

In PKC 2017 Part I, LNCS 10175, pages 36-66. Springer, Heidelberg,
March 2N17
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Information A gets on b* in PKE

Mp+ +U-t mod p

Where:
(1) u 0 mod p with proba DT*W ~ 1
and

(2) t sampled from D, folded gaussian, (almost) uniform mod s - p

l

Distribution of t (almost) uniform mod p and mod s
and (t mod p) independent of (t mod s)

|

u - t perfectly masks my. mod p

27



Game 0: the original security experiment

Adv

—

€ = (Co= g5, &1 = -,
L ..., Co=fYe - )

4 0] N
utput (b = b*)

Game 0 is the original security experiment.
28



Game 1: use msk to compute C*

Adv

- Output (b = b*
\ ) utput (b = b")

From A's view, Games 0 and 1 are identical.
29



Game 2: compute Cy € G\G

Adv

'C1 :f)h "Célw
— o, Co=fre . C)

- Output (b = b*
\ ) utput (b = b")

Games 1 and 2 are undistinguishable to A
under the HSM assumption. 30



Leaked Information in Game 2

We consider the information leaked on b* by:

- the public key
- the challenge ciphertext
- key derivation queries

31



Information fixed by public key

mpk = {h; = g5 ™" }icqg
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Information fixed by challenge ciphertext

5* = (Co = glf) o 7, {C,~ = fYor.i . Cy }ie[é])
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Information fixed by challenge ciphertext

5* = (Co = glf) o 7, {C,~ = fYor.i . Cy }ie[é])

Reveals

|

C[ = g;‘ mod s .fyb*,d’u"‘ mod p
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Information fixed by challenge ciphertext

5* = (Co = glf) o 7, {C,~ = fYor.i . Cy }ie[é])

Reveals

|

C[ = g;‘ mod s .fyb*,d’u"‘ mod p

Fixes

|

Yo + ut mod p
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Information fixed by key derivation oracle

For X such that (X, Vo) = (X,;) mod p:

sky = (£,X) mod p
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Information fixed by key derivation oracle

For X such that (X, Vo) = (X,;) mod p:
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Reveals all the information on t for directions L to y; — Va.

Vi — Yo

34



Information fixed by key derivation oracle

For X such that (X, Vo) = (X,;) mod p:

sky = (£,X) mod p
Reveals all the information on t for directions L to y; — Va.

Vi — Yo

Remaining entropy on t contained in (t,yo — v3)

34



A's success probability

From A’s view, (, o — V) follows a distribution ~ 1/(Z/pZ).
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A's success probability

From A’s view, (, o — V) follows a distribution ~ 1/(Z/pZ).

The ciphertext reveals:
Yo« + ut mod p

The information on b* is contained in:

(Ve Yo — Y1) + u(t, o — y2) mod p
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A's success probability

From A’s view, (, o — V) follows a distribution ~ 1/(Z/pZ).

The ciphertext reveals:
Yo« + ut mod p

The information on b* is contained in:

(Voe» Yo — V1) + u(t, o — ¥1) mod p
A cannot guess b* with proba > 1/2 + negl

35
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