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The linear sieve

Algorithm for computing discrete logarithms in Fg with g = p9.
Fq = Fp[X]/A(X) with A(X) € Fp[X]

A(X) unitary, irreducible, degree d.

Set x = X mod A(X).

Forevery 0 < n<d—1 set

Ly=F,®xF,®---®x"Fp C Fg.
Solg=F,CcLiCc...CLly1=Fgand
Lax Ly CLiyp ifa+b<n-1.
Fix .

Look for multiplicative relations between elements in L.
For example if Kk = 1 :

H (aj + bix)¥ =1¢€ Fq (1)

1<i<l

with a; and b; in Fp.



Finding relations

Once found enough relations we have a basis of the Z-module of
relations between elements in L,..

How do we find relations like 17

Assume again k = 1.

Pick random triples (aj, bj, €;) and compute the residue modulo
A(X) of H,-(a,- + b,‘X)ei :

r(X) = [](ai + biX)* mod A(X)
with deg(r(X)) <d —1.
Hope r(X) splits as r(X) = [];(u; + viX)f.
We get the relation

H(a; + bix)® H(uj- +vx)h =1

i J

L,. is called the smoothness base.



A remark by Joux and Lercier

Recall x = X mod A(X).

Assume there is an automorphism a of Iy such that a(x) = ux + v
avec u, v € Fp,

Letting a act on equation 1 we obtain another relation of the same

type :

H (ai + bi(ux + v))¥ =1 € F,. (2)
1<i<!
Indeed a acts not only on equations but also on factors a; + b;x.
Assuming a = ¢“

a(x) =xP" =ux+v e, (3)

Remove ux + v out of the smoothness base and replace it in every
relation by xP".

Divide the size of the smoothness base by the order of the group
generated by a (at most d).



Degree maps

Strategy : find smoothness bases that are Galois invariant.

In the above case, define the degree of z = ag + a1x + - - - + axx
to be kif 0 < k < d and a, # 0.

Smallest k s.t. z € L.

o deg(z x t) < deg(z) + deg(t),
@ there are p" elements with degree < n for n < d,

@ there is an algorithm that factors certain elements in
Lyg—1 =4 as products of elements with smaller degree. There
is a significant proportion of such smooth elements.

We look for such degree functions that are Galois invariant.



An example

This example is given by Joux et Lercier :

Take p =43 and d = 6 so g = 43% and let A(X) = X® — 3 which
is irreducible in Fa3[X].

So Fy = Fa3[X]/X® — 3.

Since p = 43 is congruent to 1 modulo d = 6 we have

P(x) = xM = (x%)" x x = 3"x = (px

with (g = 37 = 37 mod 43.

This is Kummer theory. Similar examples are produced by
Artin-Schreier theory. What are the limitations of these
constructions ?



Kummer theory

Classify cyclic degree d extensions of K with characteristic p prime
to d containing a primitive d-th root of unity.

Embed K in a Galois closure K.

Let H be a subgroup of K* containing (K*)“.

Set L = K(Ha).

One associates to every a in Gal(K(H%)/K) an homomorphism
w(a) from H/(K*)¥ to g

Q=

a(f
0a

) .

k(a): 60—

The map a — x(a) is an isomorphism from Gal(K(H%)/K) to
Hom(H/(K*)?, pg).
Classifies abelian extensions of K with exponent dividing d.



Kummer theory of finite fields

If K =T, then any subgroup H of K* is cyclic. We must assume
dlg—1andset g — 1= md.

We take H = K* so K*/(K*)? is cyclic with order d corresponding
to the unique degree d extension of K :

Let r be a generator of K* and

Qlm

S=rd.

Set L = K(s). The Galois group is generated by the Frobenius ¢
and ¢(s) = s9 so

The map r — ¢ from K*/(K*)? to 4 is exponentiation by m.



Artin-Schreier theory

Classifies degree p extensions of K.

Here the map X — X9 is replaced by X — XP — X = p(X).
One adds to K the roots of XP — X = a.

Let H be a subgroup of (K, +) containing p(K) and set

L= K(p}(H)).

To every a in Gal(L/K) one associates an homomorphism x(a)
from H/p(K) to (Fp, +) :

k(a) : 0+ a(p™H(0)) — o1 (0).

The map a — k(a) is an isomorphism from the Galois group
Gal(L/K) to Hom(H/p(K),Fp).



Artin-Schreier for finite fields

Assume K = F, with g = pf.

The kernel of p : Fg — Fq is F), and the quotient Fy/o(Fq) has
order p.

The unique extension L of degree p of I, is generated by

b= p~1(a) with a € F, — p(F,).

¢(b) — bisin F, and the map a — ¢(b) — b is an isomorphism
from K/p(K) to Fp,.

More explicitly ¢(b) = b9 and

¢(b) —b=b7—b=(bP)P' " —b=(b+a)P " — bsince
o(b) =bP — b= a.

So bP" — b= bP""' — b+ 2P’ and iterating we obtain

1

db)—b=b" —b=at+aP+a” + ..+ .

So the isomorphism from K/p(K) to F, is the absolute trace.



Invariant flags of linear spaces

Kummer : L = K[x] with x¢ = r

Ly = K@ Kx @ - @ Kxk is Galois invariant since a(x) = (x and
¢ e K.

We have a Galois invariant flag

K=LlgCcliCc---Clg1=L

of vector spaces.

Artin-Schreier : L = K[x] with x? — x = a and a(x) = x + ¢ with
c € Kso a(x¥) = (x + c)k € L.

This time the Galois action is triangular rather than diagonal. Same
phenomenon for Witt-Artin-Schreier extensions.

In both cases we have a Galois invariant degree function.



Invariant flags of linear spaces

Which cyclic extensions L/K allow such a Galois invariant flag of
vector spaces ?

Let C be the (cyclic) Galois group and d its order.

Assume d is prime to p. Let ¢ be a generator of C.

Let (w, d(w), d?(w), ..., 09 1 (w)) be a normal K-base of L.
For every irreducible factor f € K[X] of X9 — 1, call V¢ C L the
associated characteristic subspace in L.

Every Galois invariant K-linear space in L is a direct sum of such
characteristic spaces.

If a complete Galois invariant flag exists

K=LlgCcliCc---Cly1=1L

with Ly of dimension k, then every f must have degree 1. So
X9 — 1 splits on K and we are in the Kummer case.



Specializing isogenies between algebraic groups

Le G/K be a commutative algebraic group over a perfect field and
T C G(K) a finite subgroup and

|:G—H

the quotient by T.

Set d = #T = deg(/).

Assume there is a K-rational point a in H such that /=1(a) is
irreducible.

Any b € G(FF,,) such that /(b) = a defines a degree d cyclic
extension L = K(b) of K. Indeed we have a non-degenerate pairing

<,>: HK)/I(G(K)) x Gal(I"Y(H(K))) = T
If a € H(K) take b € I71(a) and set < a,a >= a(b) — b.



Geometric automorphisms

Automorphisms of K(b)/K admit a geometric description. They act

by translation.
Let ¢ be a generator of Gal(K(b)/K). There is a t € T such that

¢(b) = bdg t.

Kummer : G=H = G, and | = [d].

See G C Al with z-coordinate and z(0g) = 1 and
2(P1&6,, P2) = 2(P1) x 2(P2), 2(I(P)) = z(P)?, z(t) =,
z(b &g, t) = ¢ x z(b).

Artin-Schreier : G=H =G, and I = p

See G, = A! with z-coordinate z(0g) = 0 and
z(P106,P2) = 2(P1) + 2(P2), 2(p(P)) = 2(P)? — 2(P),
z(P&g,t) = z(P) + ¢ where ¢ = z(t) € Fp,.



A different example

We first take G to be the Lucas torus. Assume p is odd.

Let D be a non-zero element in K.

Let P! be the projective line with homogeneous coordinates [U, V]
and affine coordinate u = %

G C P! is the open subset with inequation

U? — DV? +£0.

u(0g) = oo and u(P1®gP?) = % and
u(@GPl) = —U(Pl).
Assume K =, and D is not a square in [g.
#G(Fq) =g+ 1and v e FqU {oo}.
The Frobenius endomorphism ¢ : [U, V] — [U9, V9] is nothing but
multiplication by —gq.
Indeed
(U+ VVD) = U9 —DVI

because D is not a square Fg.



Using the Lucas Torus

If d divides g + 1 then G[d] is F4-rational.

Set g + 1 = md and consider the isogeny | = [d] : G — G.

The quotient G(F,)/I(G(Fq)) = G(F,)/G(F,)¢ is cyclic of order
d. Let r be a generator of G(F,) and choose s € I71(r).

Let L = K(s) = K(u(s)) a degree d extension of K.

For any a € Gal(L/K), the difference a(s) Sg s lies in G[d] and the
pairing

<a,r>—a(s)ogs

induces an isomorphism from Gal(L/K) to
Hom(G(K)/(G(K))?, Gld]).

Here Gal(L/K) is generated by ¢ and < ¢, r > is ¢(s) Sg s.
Remember that ¢(s) = [—q] so

(¢,r) =[-q = ls=[-m]r.



Lucas polynomials

Call o the u-coordinate of s and 7 the one of t then

7o+ D
o) = 2

and the Frobenius acts like a linear rational transform.
Let A(X) = [Ise/-1((X — u(s)) be the minimal polynomial of
u(s) and set L = K[X]/A(X).

d

One has (U + \/Ev)d = Eogzkgd ( oy
d — _

VD Y1 cokt1<d ( k41 ) Ud—2k—1\/2k+1 k|

d
2 0<2k<d u(P)?—2k ( ) Dk

> Ud72kv2ka+

So u([K]P) = 2k

d
Z1§2k+1gd u(P)d—2k-1 ( 2% + 1 >Dk



A non-linear flag

J d
A(X)=Zo<2k<dxd‘2k( ok )Dk“(’)21<2k+1<dxd_2k_1( 2k +1 )Dk'

Set x = X mod A(X). The Galois group acts on x by linear rational
transforms so it is sensible to define for every k < d

k

2
ag + aix + axx® + -+ + akx
X |(20,a1,--ak,bo,b1,.... bk ) EKZK 21

bo + bix + box? + - + byx

Py ={
One has

K=PCcPiC---CPy_1=1L

and the the Py are Galois invariant.
Further

Pk X P/ C Pk+/
ifk+/1<d-1.



An example

Take p=qg=13and d =7 so m=2. Check D =2 is not a
square in [Fy3.

Find r = U 4+ v/2V such that r has order p+1=141in
Fis(v2)" /Fl;.

For example U = 3 et V = 2 are fine.

The u-coordinate of 3 +2v2is u(r) = 3 = 8.

A(X) = X7 +3X5 +10X> + 4X — 8(7X° + 5X* + 6X* + 8).

Set t = [-m]|r = [-2]r so u(t) = 4. Since Frobenius acts like
translation by t :

_4X 2

XP
X+4

mod A(X).
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Using elliptic curves
This time we take G = E/F, an ordinary elliptic curve.
Let i be a degree d ideal of End(E) dividing ¢ — 1.
Assume i is invertible and End(E)/i is cyclic.
Set T =KeriC E(Fg)and | : E— F=E/T.
The quotient F(IFy)/I(E(Fq)) is isomorphic to T.
Choose a in F(FFy) such that a mod /(E(Fy)) is a generator.
Choose b € I71(a) and set L = K(b) a degree d extension.
Clearly ¢(b) = bg t for some t € T.
For any integer k > 0 call Fj the set of functions in F(E) with
degree < k having no pole at b.

Pr = {f(b)|f € Fk}.
Cleary K=Py=P,CP,C---C P;=L and

Pk X P/ C Pk+/.

Since Fy is invariant by T, also Py is invariant by Gal(L/K)
because ¢(f (b)) = f(o(b)) = f(b &g t).



