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This vertex re
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An isogeny is a morphism of finite Th[s verte
L. X repre
between twWO elliptic curves. CUrve E sents an ” .
0 0ver a finj elliptie
(te field F

The degree of an isogeny is the
size of the kernel (our isogenies
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This edge is an isogeny of



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

O Any isogeny has a dual of
Eo’\ the same degree (here, #)
going in the opposite
direction
)

.El



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

O Any isogeny has a dual of

Eo the same degree (here, #)
00ing in the opposite
direction

_ £, Sowe represent it by a hown-
directed edge



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

From Eo, there are other @
isogenies of degree £, going /
to other eurves
O Any isogeny has a dval of
Ez. /Eo the same degree (here, #)
going in the opposite
direction

_ £, Sowe represent it by a hown-
directed edge



ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

o Ne.ighbours of Eo have wore
\ neighbours

From Eo, there are other @ — @
isogenies of degree £, going /
to other curves
O Any isogeny has a dual of
Ez. /Eo the same degree (here, #)
going in the opposite
direction

_ £, Sowe represent it by a hon-
directed edge
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Once all.fhe possible neighbours have been reached.
we obtain the connected graph of £-180gehies of Eg
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ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

Why is this useful? ‘ Level 2 floor

By inspecting solely the structure of the graph, one can infer
that Eo is af “level 17 in #... which tells a lot about the

endoworphiswm ring of Eo!



APPLICATIONS

» Computing the endomorphism ring of an elliptic curve
[Kohel, 1996],

» Counting points [Fouquet et Morain, 2002],

» Random self-reducibility of the discrete logarithm problem
[Jao et al., 2005] (worst case to average case reduction)

» Accelerating the CM method [Sutherland 2012],

» Computing modular polynomials [Broker et al., 2012]
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GENERALISING TO ORDINARY ABELIAN VARIETIES. ..

» These applications motivate the search for a generalisation
to other abelian varieties...

/ A Principally polariseq
O

abelian surface over 4

‘\ // \. ‘/ﬁnh‘e field F
/0 /V\

Isogeny of type (£.¢)
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» These app \cations motivate the search for a gen/ea'fiYion




Maybe we shouldn’t focus on (£Z.#)-isogenies?

Maybe we do not look for the correct
structures?

Should we focus on subgraphs?
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ENDOMORPHISM RING AND ALGEBRA

» Let & be an ordinary abelian variety of
dimension g over a finite field F = I,

» The endomorphisms of & form a ring K> 0 =End(d)
End(&). 2 |
Ko
» The algebra K=End(&) ® @ is a number
field of degree 2g (a CM-field). g |
Q

» End(&f) is isomorphic to an order O of K

(i.e., a lattice of dimension 2g in K, that is
also a subring).



THE CASE OF ELLIPTIC CURVES

» If o =Eis an elliptic curve, the
dimensionisg = 1.

» K has a maximal order Ok, the ring of K'> O = End(E)

integers of K. 2

» Any order of K is of the form Ko=Q

O =7+ f@/(,
for a positive integer f, the conductor.



THE CASE OF ELLIPTIC CURVES

The “levels” of the volcano of £-isogenies tell how
many times £ divises the conductor. Here, (f,£) = 1.

'\:\0 End = Z + fO,
-~ \
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Only an £-isogeny can change the valuation at £ of
the conductor.
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THE CASE OF ELLIPTIC CURVES

Only an £-isogeny can change the valuation at £ of
the conductor.
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THE CASE OF ELLIPTIC CURVES

Only an £-isogeny can change the valuation at £ of
the conductor.

Horizontal
Pescending o £-isogeny
Z-isogeny / / \:7 End = Z + fOk
. \
/ =7 + Ok

End =Z + 22fO¢
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THE CASE OF ELLIPTIC CURVES

Only an £-isogeny can change the valuation at £ of
the conductor.

Horizontal
Pescending o £-isogeny
Z-isogeny / / \:7 End = Z + fOk
. \
/ =7 + Ok

End =Z + 22fO¢

‘/ \ / \‘_) Ascending
e / \ . -isogeny
O ® O
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» This classification of orders in quadratic fields is the key to
the volcanic structures for elliptic curves.

» Analog in dimension g > 1? For any field Ko and quadratic
extension K/Kp, we prove the following classification
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CLASSIFICATION OF ORDERS

» This classification of orders in quadratic fields is the key to
the volcanic structures for elliptic curves.

» Analog in dimension g > 1? For any field Ko and quadratic
extension K/Kp, we prove the following classification

Any order 0 of K containing Ok, is of the form
O = @KO + f@/(

for an ideal f of Ok,, the conductor of 0.

We actually look at this result “localy” at a prime ¢,
i.e., for the étale algebra K @ Q, .
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CLASSIFICATION OF ORDERS

Any order O of K containing Ok, is of the form

O = @K0+f@K

for an ideal f of Ok,, the conductor of 0.

» This is exactly O = Z + fOx when Ky = Q!

» When 0O contains Ok, we say that @ has maximal real
multiplication (RM).

» For Ko = Q, any order has maximal RM since Ok, = Z.
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[-ISOGENIES

» For an elliptic curve, the conductor is an integer f, which
decomposes as a product of prime numbers: we then look
at £-isogenies where £ is a prime number

» For g > 1 and maximal RM, the conductor is an ideal { of

Ok, and decomposes into prime ideals...
» Notion of l-isogenies, where [ is a prime ideal of O,?

An l-isogeny from & is an isogeny whose kernel is a cyclic

sub-Ok,-module of L[I].

Only an [-isogeny can change the valvation at I of the conductor.
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VOLCANQES AGAIN?

If & has maximal RM (locally at £), and I is a prime ideal of

Ok, above ¢, is the graph of l-isogenies a volcano?

Theorew: yes!... at least when [ is principal, and all the
units of O are totally real

/ \\\. EndE@K0+f@K

— @KO + 1fOk

/ \. / \ End = Ok, + 130«



VOLCANQES AGAIN?

If [ is not principal? The graph is oriented!

O

/\

IS
St Bl

@ End = @KO + I3f@/<

End = @KO + f@/(
= Oy + 11Ok

End = @KO + sz@K



VOLCANQES AGAIN?

If O« has complex vnits 2 Multiplicities appear

For instance, K = Q(Ts), Ko = @(Ts + {5'), and [ = 20k,
(‘

SN

End = @KO + f@[(

= @KO + If@/{

® End = Ok, + [%{0k






(£,£)-ISOGENIES

» Let o be a principally polarised, ordinary abelian surface.

» An (£,£)-isogeny is an isogeny & = 9B whose kernel is a
maximal isotropic subgroup of &[£] for the Weil pairing.

» (£,£)-isogenies are easier to compute! Much more efficient
than [-isogenies...
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We show that (£,£)-isogenies preserving the maximal RM are
exactly:
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(£,£)-ISOGENIES

We show that (£,£)-isogenies preserving the maximal RM are
exactly:

» The l-isogenies if £ isinertin Ko (i.e., [ = £0k,)

» The compositions of an [1-isogeny with an [»-isogeny if £
splits or ramifies as 20k, = [115.
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GRAPHS OF (£,¢)-ISOGENIES PRESERVING THE RM

Assume 20k = 12



WHERE TO GO FROM THERE?

» We described the structure of graphs of (£,£)-isogenies
preserving the maximal RM.

» Itis also interesting to look at (£,£)-isogenies changing the
RM. We can describe this graph locally.

» In particular, if the RM is not maximal, we show that there is
an (£,£)-isogeny increasing it.

» Afirst application: these results allow to describe an
algorithm finding a path of (£,£)-isogenies to a variety with
maximal endomorphism ring.
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THE TATE MODULE

Lattices in an #-adic vector space €—> Wernels of {sogenies

{ lattices in V containing T } «— { finite subgroups of &[£>] }

L —> f(L/T)

» There is a natural isomorphism f: V/T = o[£>].



THE TATE MODULE

Lattices in an #-adic vector space €—> Wernels of {sogenies

{ lattices in V containing T } «— { finite subgroups of &[£>] }

L — f(L/T)
fFUG)+T — G

» There is a natural isomorphism f: V/T = o[£>].
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COMPLEX MULTIPLICATION ON THE TATE MODULE

» T=ToA) =<|i_m d["land V=T ® Q.
» End(&f) acts on T. Actually, End(&f) ® Z; acts on T.

» Ky = End(&f) ® @ acts on V (we have Ky = K ® Qp where K is
the endomorphism algebra of &, a CM-field)

» Given a lattice L in V containing T, the set of elements of K;
preserving L is an order in Ky, denoted O(L).
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COMPLEX MULTIPLICATION ON THE TATE MODULE

Lattices in an #-adic veetor space €—> Kernels of isogenies

{ lattices in V containing T } «— { finite subgroups of &[£>] }
L — G isogeny of — /6
O(L)

IR

End(&f/G) ® Zy



COMPLEX MULTIPLICATION ON THE TATE MODULE

Lattices in an £-adie veetor space €—> Kernels of isogenies

{ lattices in V containing T } «— { finite subgroups of &[£>] }

L — G isogeny of — /6

IR

O(L) End(/G) ® Z,

» We can study isogenies and their relation to
endomorphism rings by looking at lattices in the £-adic
vector space V.
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LATTICES AND X-ISOGENIES

{ lattices in V containing T } «— { finite subgroups of &[£>] }

U U
lattices L suchthat T c L
and L/T is a sub-F-vector

f k1 of I1'T/T
space ot fahk 1.0 { cyclic sub-Ok,-modules of [I] }

P (T/LT) { cyclic sub-Ok,/I-modules of L[] }

«— { kernels of l-isogenies }

{ rank 1 sub-F-vector spaces of [I] }
F = Oky/1 is a finite field
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FINDING FIXED POINTS

PY(T/IT) <«— {kernels of l-isogenies }

I

P (0/10)

» Suppose 0 = O(T) has maximal RM (i.e., Ok, ® Z; c 0). It is

Gorenstein so T is a rank 1 free G-module.

» 0% = (End() ® Zy)* acts on P(O/10), and elements that

are not fixed by this action are descending [-isogenies.
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FINDING FIXED POINTS
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FINDING FIXED POINTS

PI(6/16) <«— {kernels of [-isogenies }

» Let | be the conductor of @.Then, 0 = Ok, ® Z; + {(Ok ® Zy).

» The action of 6* on P'(G/10) has the following fixed points:

S e B

o {I@’/I@} |f [ | f, W|th O' the order of conductor [ 1f
k Is this isogeny ascending?

All the other (non-fixed) elements give descending isogenies
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o ({O'/10} if [ | §, with O0' the order of conductor I['f.

lattices L suchthat T c L - -
P'(O/10) «— < and L/Tis a sub-F-vector » «— + k.ernels .Of :
space of rank 1 of [''T/T _[-isogenies

[6'/TO0 «— [O'T > G
OlO'T)=0' — End(d/G)® Z;=0"'

the corresponding
isogeny is ascending
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DESCENDING, THEN ASCENDING

» If o — AB is a descending [-isogeny, where does the
unique ascending isogeny from 9% go?

A = A/A|l]
N
B3 B By

» ltgoesto € = A/ANL].

» If L =(a)is principal, then the endomorphism a induces an
isomorphism & = o/A[1].



MULTIPLICITIES

» Suppose there is a descending [-isogeny f — .



MULTIPLICITIES

» Suppose there is a descending [-isogeny f — .

» Then, there are [End(&f)* : End(98)*] distinct kernels of
[-isogeny o — 3.



MULTIPLICITIES

» Suppose there is a descending [-isogeny f — .

» Then, there are [End(&f)* : End(98)*] distinct kernels of
[-isogeny o — 3.

A

[End(f)* : End(%)"]\

9B



MULTIPLICITIES

» Suppose there is a descending [-isogeny f — .

» Then, there are [End(&f)* : End(98)*] distinct kernels of
[-isogeny o — 3.

A/ A|1]

[End(&)* : End(AB \ /



MULTIPLICITIES

» Suppose there is a descending [-isogeny f — .

» Then, there are [End(&f)* : End(98)*] distinct kernels of
[-isogeny o — 3.

A/ A|1]

[End(&)* : End(AB \ /

» The index [End(&)* : End(98)*] is always 1 if all the units of
K are totally real (it is the case of any quartic K # Q(Cs))
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COUNTING VERTICES AND CONCLUDING

» Last ingredient: we can count the number of vertices on
each level using the class number formula.

» Putting all this together, we obtain a precise description of
the isogeny graphs.

» They are volcanoes exactly when K has no complex units
(no multiplicities on the edges) and [ is principal (the edges
are undirected).
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