Cryptographie à base de courbes elliptiques : algorithmes et implémentation

Sorina Ionica

IMB, Université de Bordeaux
Public key cryptography

Sharing a common secret over an insecure channel
Public key cryptography and groups

- Diffie-Hellman Key Exchange: \((G, +, P)\) public

\[
\begin{align*}
&\text{Alice} \quad P_A \quad \text{Bob} \\
&a, P_A = aP \quad b, P_B = bP \\
&K = aP_B \quad K = bP_B \\
&K = abP
\end{align*}
\]

Security: the Discrete Logarithm Problem (DLP) in \(G\)

- Given \(P, Q \in G\) find (if it exists) \(\lambda\) such that

\[
Q = \lambda P
\]
Elliptic Curve Cryptography

Consider \mathbb{F}_q, $\text{char}(\mathbb{F}_q) \neq 2, 3$

Weierstrass form

$$y^2 = x^3 + ax + b$$

- Secure implementation: DLP is hard if $r = \#G$ is a large prime number.
- Shorter keys (compared to RSA, group cryptography over finite fields)
Table: Complexity of generic attacks

<table>
<thead>
<tr>
<th>method</th>
<th>Fastest known attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>Number Field Sieve $\exp\left(\frac{1}{2}(\log N)^{\frac{1}{3}}(\log \log N)^{\frac{2}{3}}\right)$</td>
</tr>
<tr>
<td>ECC</td>
<td>Pollard-rho $\sqrt{r} = \exp\left(\frac{1}{2} \log r\right)$</td>
</tr>
</tbody>
</table>

Table: Key sizes

<table>
<thead>
<tr>
<th>Security level</th>
<th>RSA</th>
<th>ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 bits</td>
<td>1024</td>
<td>160</td>
</tr>
<tr>
<td>128 bits</td>
<td>3072</td>
<td>256</td>
</tr>
<tr>
<td>256 bits</td>
<td>15360</td>
<td>512</td>
</tr>
</tbody>
</table>
ECC in the real world

key exchange, signatures, identification
Elliptic versus genus 2 curves

Genus 1 addition

\[E(\mathbb{F}_q) : y^2 = x^3 - 3x + 1 \]

\[\oplus R = P \oplus Q \]

\[\#E(\mathbb{F}_q) \sim q \]

Genus 2 addition

\[C_1(\mathbb{F}_q) : y^2 = x^5 - 3x^3 + x, \]

\[\#J_C(\mathbb{F}_q) \sim q^2 \]
Scalar multiplication

- multiplication-by-m map: $P \mapsto [m]P$ on $E(\mathbb{F}_q)$,
 $\mathcal{D} \mapsto [m]\mathcal{D}$ on $J_C(\mathbb{F}_q)$

- optimized binary double-and-add scalar multiplication:

1. write m in binary rep. $m = \sum_{i=0}^{\log m - 1} m_i2^i$, $m_i \in \{0, 1\}$
2. $R \leftarrow P$
3. for i from $\log m - 1$ to 0 do
 1. $R \leftarrow 2R$ \hspace{1cm} (Doubling)
 2. if $m_i = 1$ then $R \leftarrow R + P$ \hspace{1cm} (Addition)
4. return R

- cost: $\log m$ doublings + $\sim \frac{1}{2} \log m$ additions in average
Multi-scalar multiplication

\[[m]P + [\ell]Q \in G \subset E(\mathbb{F}_q)\]

1. write \(m \leq \ell \) in binary rep. \(m = \sum_{i=0}^{\log m-1} m_i 2^i \), \(\ell = \sum_{i=0}^{\log \ell-1} \ell_i 2^i \), \(m_i, \ell_i \in \{0, 1\} \)
2. precompute \(T = P + Q \)
3. if \(\log \ell > \log m \) then \(R \leftarrow Q \)
4. else \(R \leftarrow T \)
5. for \(i \) from \(\log \ell - 1 \) to 0 do
 1. \(R \leftarrow 2R \)
 2. if \(m_i = \ell_i = 1 \) then \(R \leftarrow R + T \)
 3. else if \(m_i = 1 \) and \(\ell_i = 0 \) then \(R \leftarrow R + P \)
 4. else if \(m_i = 0 \) and \(\ell_i = 1 \) then \(R \leftarrow R + Q \)
6. return \(R \)

- cost: \(\log \ell \) doublings + \(\sim \frac{3}{4} \log \ell \) additions in average
Assume there is an efficient (almost free) endomorphism

\[\phi : G \to G, \quad \phi(P) = \lambda_\phi P \]

\(\lambda_\phi\) is large \(\to\) decompose \(m = m_0 + \lambda_\phi m_1 \mod r\) with

\[\log m_0 \sim \log m_1 \sim \log m/2 \]

Multi-exponentiation

Compute

\[mP = m_0 P + m_1 \phi(P) \] in

\[(\log m)/2\] operations.

Save half doublings for a cost of a quarter of additions.
Endomorphisms: an example

\[E_\alpha(\mathbb{F}_q) : y^2 = x^3 + \alpha x, \quad j(E_\alpha) = 1728 \text{ (i.e. CM by } \sqrt{-1}, \ D = 4) \]

- \[q \equiv 1 \text{ mod } 4, \]
- let \[i \in \mathbb{F}_q \text{ s.t. } i^2 = -1 \in \mathbb{F}_q \]
- \[\phi : (x, y) \mapsto (-x, iy) \text{ is an endomorphism} \]
- \[\phi \circ \phi(x, y) = (x, -y) \]
- \[\phi^2 + \text{Id} = 0 \text{ on } E(\mathbb{F}_q) \]
- eigenvalue: \[\lambda_\phi \equiv \sqrt{-1} \text{ mod } \#E(\mathbb{F}_q) \]
- this means for \(P \) of prime-order \(r \), \[\phi(P) = [\lambda_\phi \mod r]P \]
Endomorphism: Frobenius map

- Frobenius map, $E(\mathbb{F}_q)$, $(x, y) \in E(\mathbb{F}_q^n) \mapsto (x^q, y^q) \in E(\mathbb{F}_q^n)$. Why?
 - $E(\mathbb{F}_q)$: $y^2 = x^3 + a_4x + a_6$, $a_4, a_6 \in \mathbb{F}_q$
 - Not directly useful in this way. Used with twisted curves (Galbraith-Lin-Scott GLS curves)

- $j(E) = 1728, 8000, -3375 \leftrightarrow \phi = \sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}$.
- $j(E) = 0, 54000, -32768 \leftrightarrow \phi = \frac{-1+\sqrt{-3}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2}$.

Galbraith-Lin-Scott (GLS) curves (2009): defined over \mathbb{F}_{q^2} instead of \mathbb{F}_q, $j \in \mathbb{F}_q$, one endomorphism $\phi: \phi^2 = -\text{Id}$ on $E(\mathbb{F}_{q^2})$.
 - but still $j \in \mathbb{F}_q$

- These are all available fast endomorphisms.
Implementation

Fast algorithms for scalar multiplication: GLV

Fast modular arithmetic: special primes (ex. $p = 2^{127} - 1$)

Fast group law computation

Example: No curve E/\mathbb{F}_{q^2} with $p = 2^{127} - 1$ and GLV of dimension 4.

Challenge: the fastest implementation for a given security level
Our contribution

Four dimensional GLV via the Weil restriction

joint work with Aurore Guillevic
GLV friendly curve zoo

Genus 1

- GLV 2001: complex multiplication by \(\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2} \).
- Galbraith-Lin-Scott 2009: curves over \(\mathbb{F}_{q^2} \), \(j \in \mathbb{F}_q \).
- Longa-Sica 2012: 4-dim GLV+GLS

Genus 2

- Mestre, Kohel-Smith, Takashima: explicit real multiplication by \(\sqrt{2}, \sqrt{5} \).
- 4-dim.: Buhler-Koblitz, Furukawa-Takahashi curves

This work: 4-dim.-GLV on two families of curves over \(\mathbb{F}_{q^2} \), but \(j \in \mathbb{F}_q \).
GLV friendly curve zoo

Genus 1

- GLV 2001: complex multiplication by \(\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2}\).
- Galbraith-Lin-Scott 2009: curves over \(\mathbb{F}_{q^2}\), \(j \in \mathbb{F}_q\).
- Longa-Sica 2012: 4-dim GLV+GLS

Genus 2

- Mestre, Kohel-Smith, Takashima: explicit real multiplication by \(\sqrt{2}, \sqrt{5}\).
- 4-dim.: Buhler-Koblitz, Furukawa-Takahashi curves
- This work: 4-dim.-GLV on Satoh/Satoh-Freeman curves 2009
Genus 1

- GLV 2001: complex multiplication by $\sqrt{-1}$, $\sqrt{-2}$, $\frac{1+\sqrt{-7}}{2}$, $\sqrt{-3}$, $\frac{1+\sqrt{-11}}{2}$.
- Galbraith-Lin-Scott 2009: curves $/\mathbb{F}_{q^2}$, $j \in \mathbb{F}_q$.
- Longa-Sica 2012: 4-dim GLV+GLS
- This work: 4 dim.-GLV on two families of curves $/\mathbb{F}_{q^2}$, but $j \in \mathbb{F}_{q^2}$.

Genus 2

- Mestre, Kohel-Smith, Takashima: explicit real multiplication by $\sqrt{2}$, $\sqrt{5}$.
- 4-dim.: Buhler-Koblitz, Furukawa-Takahashi curves
- This work: 4-dim.-GLV on Satoh/Satoh-Freeman curves 2009.
We would like a 4-dimensional decomposition of \(m \) when computing \(mP \)

- 2 endomorphisms \(\phi, \psi \) of eigenvalues \(\lambda_\phi, \lambda_\psi \)
- decompose \(m \equiv m_1 + m_2 \lambda_\phi + m_3 \lambda_\psi + m_4 \lambda_\phi \lambda_\psi \mod r \) with \(\log m_i \sim \frac{1}{4} \log m \)
- Store \(P, \phi(P), \psi(P), \phi\psi(P), \ldots \Rightarrow 16 \) points
- 4-dim. multiexponentiation → Save \(\frac{3}{4} \log m \) doublings and \(\sim \frac{17}{32} \log m \) additions.
Curves are ordinary, i.e. endomorphisms form a lattice of dimension 2 $\Rightarrow [1, \phi]$

we need ψ s.t. $\lambda_\psi \equiv \alpha + \beta \lambda_\phi \mod r$ and $\alpha, \beta > r^{1/4}$ to have a decomposition

How to construct ψ efficiently computable?

Longa-Sica curves (2012)

Consider GLS curves with small $D \to 2$ endomorphisms

$\psi : \psi^2 + 1 = 0, \phi : \phi^2 + D = 0$ for points over \mathbb{F}_{q^2}.
Satoh’s curves

\[J_{C_1}(\mathbb{F}_{q^8}) \] \xrightarrow{\mathcal{I}} \ E_c \times E_c(\mathbb{F}_{q^8}) \]

\[\hat{\mathcal{I}} \]

\[J_{C_1}(\mathbb{F}_q) \]

\[E_c \times E_c(\mathbb{F}_{q^2}) \]

\[C_1: y^2 = x^5 + ax^3 + bx, \ a, b \in \mathbb{F}_q \]

\[J_{C_1} \text{ is the Weil restriction of } \]

\[E_c/\mathbb{F}_{q^2}: y^2 = x^3 + 27(3c - 10)x + 108(14 - 9c), \ c = a/\sqrt{b} \]
We start by computing a degree 2 isogeny (i.e. a map between curves) \mathcal{I}_2 from E_c.

$D = 2D'$
We computed with Vélu’s formulas this 2-isogeny

\[\mathcal{I}_2 : E_c \rightarrow E_{-c} \]

\[(x, y) \mapsto \left(\frac{-x}{2} + \frac{162+81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162+81c}{(x-12)^2} \right) \right) \]

\[E_c \xrightarrow{\mathcal{I}_2} E_{-c} \]

- \(E_c / \mathbb{F}_{q^2} : y^2 = x^3 + 27(3c - 10)x + 108(14 - 9c) \)
- \(E_{-c} / \mathbb{F}_{q^2} : y^2 = x^3 + 27(-3c - 10)x + 108(14 + 9c) \)
We computed with Vélu’s formulas this 2-isogeny

\[\mathcal{I}_2 : E_c \rightarrow E_{-c} \]

\[
(x, y) \mapsto \left(\frac{-x}{2} + \frac{162+81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162+81c}{(x-12)^2} \right) \right)
\]

- \(E_c / \mathbb{F}_{q^2} : y^2 = x^3 + 27(3c - 10)x + 108(14 - 9c) \)
- \(E_{-c} / \mathbb{F}_{q^2} : y^2 = x^3 + 27(-3c - 10)x + 108(14 + 9c) \)
- \(\pi_{q^2}(c) = -c \)
- Go back from \(E_{-c} \) to \(E_c \) with the Frobenius map
We computed with Vélu’s formulas this 2-isogeny

\[\mathcal{I}_2 : E_c \rightarrow E_{-c}\]

\[(x, y) \mapsto \left(\frac{-x}{2} + \frac{162+81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162+81c}{(x-12)^2}\right)\right)\]

\[\pi_q \circ \mathcal{I}_2 = \phi_2 \equiv [\sqrt{\pm 2}]\]

- \(E_c/\mathbb{F}_{q^2} : y^2 = x^3 + 27(3c - 10)x + 108(14 - 9c)\)
- \(E_{-c}/\mathbb{F}_{q^2} : y^2 = x^3 + 27(-3c - 10)x + 108(14 + 9c)\)
- In \(\mathbb{F}_{q^2}, \pi_q(c) = -c\)
- Go back from \(E_{-c}\) to \(E_c\) with the Frobenius map
We computed with Vélu’s formulas this 2-isogeny

\[\mathcal{I}_2 : E_c \rightarrow E_{-c} \]
\[(x, y) \mapsto \left(\frac{-x}{2} + \frac{162 + 81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162 + 81c}{(x-12)^2} \right) \right) \]

\[\pi_q \circ \mathcal{I}_2 = \phi_2 \equiv [\sqrt{\pm 2}] \]

- \(E_c / \mathbb{F}_{q^2} : y^2 = x^3 + 27(3c - 10)x + 108(14 - 9c) \)
- \(E_{-c} / \mathbb{F}_{q^2} : y^2 = x^3 + 27(-3c - 10)x + 108(14 + 9c) \)
- In \(\mathbb{F}_{q^2} \), \(\pi_q(c) = -c \)
- Go back from \(E_{-c} \) to \(E_c \) with the Frobenius map
- \(\phi_2 \) is different from the CM
We computed with Vélu’s formulas this 2-isogeny

\[\mathcal{I}_2 : E_c \rightarrow E_{-c} \]

\[(x, y) \mapsto \left(\frac{-x}{2} + \frac{162+81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162+81c}{(x-12)^2} \right) \right) \]

\[\pi_q \circ \mathcal{I}_2 = \phi_2 \equiv [\sqrt{\pm 2}] \]

- \(E_c/\mathbb{F}_{q^2} : y^2 = x^3 + 27(3c - 10)x + 108(14 - 9c) \)
- \(E_{-c}/\mathbb{F}_{q^2} : y^2 = x^3 + 27(-3c - 10)x + 108(14 + 9c) \)
- In \(\mathbb{F}_{q^2} \), \(\pi_q(c) = -c \)
- Go back from \(E_{-c} \) to \(E_c \) with the Frobenius map
- \(\phi_2 \) is different from the CM
- We can construct a second endomorphism from CM.
Efficient 4-dim. GLV on E_c

\[
\pi_q \circ \mathcal{I}_2 = \phi_2 \equiv [\sqrt{\pm 2}]
\]
\[
\pi_q \circ \mathcal{I}_{D'} = \phi_{D'} \equiv [\sqrt{\mp D'}]
\]

- second isogeny $\mathcal{I}_{D'}$ computed with Velu’s formulas
- 4-dimensional decomposition using proper values of $1, \phi_2, \phi_{D'}, \phi_2 \circ \phi_{D'}$.
- $\phi_2^2 \pm 2 = 0, \phi_{D'}^2 \mp D' = 0$ for points defined over \mathbb{F}_{q^2}.
Example with $D = 40$

- $D = 40 = 4 \cdot (2 \cdot 5)$
- $\#E_c(\mathbb{F}_{q^2})$ of the form $(-2n^2 - 20m^2 + 4)/4$, $4 \mid \#E_c(\mathbb{F}_{q^2})$
- search for m, n s.t. q is prime and $\#E_c(\mathbb{F}_{q^2})$ is almost prime.

\[
\begin{align*}
n &= 0x55d23edfa6a1f7e4 \\
m &= 0x549906b3eca27851 \\
t &= -0xfaca844b264dfaa353355300f9ce9d3a \\
q &= 0x9a2a8c914e2d05c3f2616cade9b911ad \\
r &= 0x1735ce0c4fbac46c2245c3ce9d8da0244f9059ae9ae4784d6b2f65b29c444309 \\
c^2 &= 0x40b634aec52905949ea0fe36099cb21a
\end{align*}
\]

with q, r prime and $\#E_c(\mathbb{F}_{q^2}) = 4r$.
Operation count at the 128 bit security level

<table>
<thead>
<tr>
<th>Curve</th>
<th>Method</th>
<th>Operation count</th>
<th>Global estim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_c</td>
<td>4-GLV, 16 pts.</td>
<td>$2748m+1668s$</td>
<td>$4416m$</td>
</tr>
<tr>
<td>$D = 4$ [LongaSica12]</td>
<td>4-GLV, 16 pts.</td>
<td>$1992m+2412s$</td>
<td>$4404m$</td>
</tr>
<tr>
<td>E_c</td>
<td>2-GLV, 4 pts.</td>
<td>$4704m+2976s$</td>
<td>$7680m$</td>
</tr>
<tr>
<td>J_{C_1}</td>
<td>4-GLV, 16 pts.</td>
<td>$4500m+ 816s$</td>
<td>$5316m$</td>
</tr>
<tr>
<td>J_{C_1}</td>
<td>2-GLV, 4 pts.</td>
<td>$7968m+1536s$</td>
<td>$9504m$</td>
</tr>
<tr>
<td>FKT [Bos et al. 13]</td>
<td>4-GLV, 16 pts.</td>
<td>$4500m+ 816s$</td>
<td>$5316m$</td>
</tr>
<tr>
<td>Kummer [Bos et al. 13]</td>
<td>–</td>
<td>$3328m+2048s$</td>
<td>$5376m$</td>
</tr>
</tbody>
</table>

Table: Benchmarks for scalar multiplication at 128 security level

<table>
<thead>
<tr>
<th>Curve</th>
<th>Method</th>
<th>Timing in ms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{1,c}$ this work</td>
<td>4-GLV, 16 pts.</td>
<td>0.002202</td>
</tr>
<tr>
<td>E_1 Longa-Sica</td>
<td>4-GLV, 16 pts.</td>
<td>0.001882</td>
</tr>
<tr>
<td>$E_{1,c}$ GLV</td>
<td>2-GLV, 4pts.</td>
<td>0.004070</td>
</tr>
<tr>
<td>J_{C_1} this work</td>
<td>4-GLV, 4 pts.</td>
<td>0.001831</td>
</tr>
</tbody>
</table>