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John Boxall (Université de Caen) PFAV heuristics Bordeaux, March 4th 2014 2 / 46



The set-up

The set-up

Basic ingredients

G1, G2, GT three groups of prime order r

e : G1 ×G2 → GT a pairing (bilinear map, supposed non-trivial)

G1, G2 additive notation, GT multiplicative notation

Fast computation of the group laws and of the pairing

Security:

DL in G1, G2 and GT must be hard
Bilinear Diffie-Helman (BDH, given P ∈ G1, Q ∈ G2, xP, xQ, yP, yQ,
zP, zQ, compute e(P,Q)xyz) must be hard
No easily computed isomorphism between G1 and G2 in either
direction (so in particular G1 6= G2).
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The set-up

Often in practice, G1 and G2 groups of points on elliptic curves or
abelian varieties, GT group of roots of unity in a finite field

In this talk: we discuss only this case
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The set-up

Notation and assumptions

p prime, q a power of p

Fq finite field of q elements (mostly q = p), Fp ⊆ Fq prime field

A abelian variety over Fq

g = gA = dimA

G1 ∈ A(Fq) of order r

for ease of computation, want q as small as possible with respect to
r :

Weil bounds: (
√
q − 1)2g ≤ ]A(Fq) ≤ (

√
q + 1)2g

=⇒ ideally, r close to qg

rho-value ρ := g log q
log r .

=⇒ ρ ≥ 1 and ideally, ρ close to 1
=⇒ q = rρ/g
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The set-up

Security: DL in Fp(µr ) (µr = group of r th of unity in Fq) must be
hard

Embedding degree: smallest integer k ≥ 1 such that Fq(µr ) = Fqk .

(Rubin -Silverberg): Under fairly general hypotheses: if k ≥ 2 then
A(Fqk ) contains a subgroup G2 6= G1 of order r such that there exists
a fast computable pairing G1 ×G2 → µr .

The proof gives G2 a trace 0 subgroup, so in general no easily
computable isomorphism between G2 and G1.

k must chosen so that

DL in Fp(µr )
× to be hard (requires k sufficiently large)

computation in Fqk as fast as possible (suggests k small)
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The set-up

Table adapted from Freeman-Scott-Teske:

Security level (bits) r (bits) qk (bits) kρ/g

128 256 3000− 5000 12− 20
192 384 8000− 10000 20− 26
256 512 14000− 18000 28− 36

Examples:

g = 1, ρ = 1, =⇒ 12 ≤ k ≤ 20: good for 128-bit level,

g = 2, ρ = 4, =⇒ 14 ≤ k ≤ 18: good for 256-bit level.
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Constructing the data

Constructing the data

q-Weil number: an algebraic integer all of whose complex conjugates
satisfy ππ = q

q-Weil polynomial: a monic polynomial in Z[x ] all of whose roots are
q-Weil numbers

Two types of q-Weil numbers:

real: π = q1/2 or −q1/2 (degree one or two)
complex: Q(π) is a CM-field (a totally imaginary quadratic extension
of a totally real field)

John Boxall (Université de Caen) PFAV heuristics Bordeaux, March 4th 2014 8 / 46



Constructing the data

(Honda-Tate): there is a bijection

{irreducible q-Weil polynomials}
⇐⇒ {isogeny classes of simple abelian varieties over Fq}

Warning: even if Q(π) is a CM-field, we may have
dim(abelian variety) 6= 1

2 [Q(π) : Q].

(Waterhouse, Freeman-Stevenhagen-Streng): Let g ≥ 1 and let p be
a prime. Let π be a p-Weil number such that Q(π) is a CM-field of
degree 2g . Then the abelian varieties over Fp in the isogeny class
corresponding to the minimal polynomial of π have dimension g .
Furthermore, if p is unramified in Q(π), they are ordinary.
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Constructing the data

Problem 1

k is the order of q in (Z/rZ)×

but (Z/rZ)× is cyclic of order r − 1, so random elements will have
large order, much to large to be able to compute in Fqk .
so, random searching infeasible

Want data (r ,M, q) as follows

r divides Φk(q) (recall r prime, Φk = k th cyclotomic polynomial)
M an irreducible q-Weil polynomial
r divides M(1)
rho-value g log q

log r as close to 1 as possible

Problem 2

how to find such data?
easy if one could factor Φk(q)
impractical for crypographically useful examples
useful for searching for baby examples to test heuristics on distribution
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Constructing the data

Problem 3. Given (r ,M, q), need to be able to compute at least one
abelian variety in the isogeny class corresponding to M.

CM methods (g = 1, 2)
theta functions

purpose of talk: present heuristics on the distribution of data in
certain cases of Problem 2, especially in the context of
Freeman-Scott-Teske
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CM-types

Review of CM-types

K CM-field of degree 2g ,

c : C→ C complex conjugation c(z) = z

CM-type on K : a set Φ of g embeddings K → C such that
Hom(K ,C) = Φ ∪ c ◦ Φ disjoint union (or the pair (K ,Φ))

CM-types (K ,Φ) and (K ′,Φ′) equivalent if there exists an
isomorphism σ : K → K ′ and α ∈ Aut(C) such that Φ′ = α ◦Φ ◦ σ−1.

L a Galois closure of K , ι : L→ C fixed embedding. If F ⊆ L, GF

subgroup of G = Gal(L/Q) fixing F .

Identify elements of Φ with embeddings of K in L using ι
S = SΦ set of all elements of Gal(L/Q) whose restriction to K belongs
to Φ.

G0 subgroup of Γ such that σ ◦ g ∈ S for all σ ∈ S , g ∈ G0

GK ⊆ G0: Φ primitive if GK = G0

K0 subfield of K corresponding to K0; Φ primitive ⇐⇒ K0 = K
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CM-types

Reflex (dual) CM-type

S−1 = {σ−1 | σ ∈ S}
G ′ = {g ∈ G | τ ◦ g ∈ S−1 for all τ ∈ S−1}
K̂ = subfield of L corresponding to G ′, so G ′ = GK̂

K̂ the reflex field of K , a CM-field

f symmetric function in the elements of Φ: a ∈ K =⇒ f (a) ∈ K̂
K̂ generated over Q by elements of the form

∑
φ∈Φ φ(a), a ∈ K .

type norm NΦ : K× → K̂×, NΦ(a) =
∏
φ∈Φ φ(a)

image of NΦ contained in the subgroup {b ∈ K̂× | bb ∈ Q} of K̂×

Φ̂ the reflex CM-type of Φ: the set of embeddings K̂ → L (or
K̂ → C) which are restrictions to K̂ of elements of S−1.

Φ̂ always primitive

if Φ is primitive, ˆ̂K = K and ˆ̂Φ = Φ

reflex type norm NΦ̂ : K̂× → K×, NΦ̂(b) =
∏
φ̂∈Φ̂ φ̂(b)
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CM-types

Examples

(Explicit description of one CM-type in each equivalence class):

g = 1: K imaginary quadratic, 2 CM-types, equivalent, primitive

K = L, Φ = Φ̂ = {idK}
g = 2: K quartic CM field, 4 CM-types

K = L, G a Klein four-group, 2 equivalence classes, neither primitive

K1 and K2 the two imaginary quadratic subfields of K
for i = 1, 2: Φi = GKi , K0 = Ki = K̂ , Φ̂i = {idKi }

K = L, G cyclic of order 4, 1 equivalence class, primitive

g a generator of G , Φ = {idK , g}, K̂ = K , Φ̂ = {idK , g
−1}

K 6= L, G dihedral of order 8, 1 equivalence class, primitive

g generator of GK , M unique real quadratic subfield of L, h generator
of GM , G =< g , h >, hg = gh−1

Φ = {idK , h}, K̂ defined by GK̂ = {id, hg}, Φ̂ = {id, g}
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CM-types

g = 3: [K : Q] = 6, 8 CM-types
K contains an imaginary quadratic subfield K1 (necessarily unique): 2
equivalence classes, one primitive the other not

Non-primitive class: K0 = K̂ = K1, Φ a set of representatives of
GK/GK1 , Φ̂ = {idK1}.
Either K = L and G cyclic of order 6, or K 6= L and G dihedral of order
12
Primitive class: g a generator of unique cyclic subgroup of G of order
6, Φ = {id, g , g 2}, K̂ = K , Φ̂ = {id, g−1, g−2}

K does not contain an imaginary quadratic subfield: 1 equivalence
class, primitive

K 6= L, and G has order 24 or 48
In both cases: G has 4 Sylow-3 subgroups, all conjugate,
H = {id, h, h2} one of them: Φ = restriction of the elements of H to K
K̂ given by GK̂ = H when |G | = 24, GK̂ = unique symmetric group S3

containing H when |G | = 48
Note [K̂ : Q] = 8
Φ̂ = set of distinct restrictions to K̂ of the elements of GK

John Boxall (Université de Caen) PFAV heuristics Bordeaux, March 4th 2014 15 / 46



p-Weil numbers and CM-types

p-Weil numbers and CM-types

(K ,Φ) a CM-type, [K : Q] = 2g

Recall reflex norm NΦ̂ : K̂× → K×

for all b ∈ K̂×, NΦ̂(b)NΦ̂(b) ∈ Q×

induces homomorphisms on ideal groups NΦ̂ : I (K̂ ) 7→ I (K ) and ideal
class groups NΦ̂ : ClK̂ → ClK

hK̂ = order of ClK̂

Define Cl(Φ̂) to be the subgroup of ClK̂ consisting of classes γ such
that for all ideals A ∈ γ, NΦ̂(A) is principal and has a generator α
such that αα ∈ Q
hΦ̂ = order of Cl(Φ̂)
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p-Weil numbers and CM-types

From now on q = p prime, π a p-Weil number in K

Say π comes from Φ if there is a an ideal A ∈ I (K̂ ) such that NΦ̂(A)
is principal with generator π

Proposition

Let (K ,Φ) be a CM-type, let p be a prime unramified in K and let π ∈ K
be a p-Weil number coming from Φ.
(i) There is a unique prime ideal P of K̂ such that π generates the ideal
NΦ̂ P of K . Furthermore, P is of degree one, and its ideal class belongs to

Cl(Φ̂).
(ii) If (K ,Φ) is primitive, then K = Q(π).
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p-Weil numbers and CM-types

wK number of roots of unity in K

Theorem

Let Φ be a CM-type on K . Then the number πΦ(x) of p-Weil numbers
coming from Φ with p prime and p ≤ x is asymptotically equal to

πΦ(x) ∼
wKhΦ̂

hK̂

∫ x

2

du

log u

as x →∞.

Proof easy, using (i) of the Proposition and the Prime Ideal Theorem
in K̂
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p-Weil numbers and CM-types

Corollary

Let K be a CM-field. Then there exists a constant C > 0 such that the
number πK ,Weil(x) of p-Weil numbers belonging to K with p prime and
p ≤ x is asymptotically equal to

πK ,Weil(x) ∼ C

∫ x

2

du

log u

as x →∞.

C is rational

Question: is there a simple formula for C in terms of invariants of K?
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Heuristics for K fixed

Heuristics for K fixed

From now on, q = p a prime only

Motivation: want heuristics for the asymptotic behaviour as x →∞
of the number of data (r ,M, p) as before, with

g ≥ 2, K CM field of degree 2g , k ≥ 2 integer and ρ0 > 1 real, all fixed
r ≤ x a prime
p ≤ rρ0/g

M irreducible p-Weil polynomial of degree 2g such that
Q[x ]/M(x) ' K
r divides Φk(p)
r divides M(1)

Must have ρ0 ≥ g/ϕ(k) (otherwise the conditions p ≤ rρ0/g and r
divides Φk(p) inconsistent)

Freeman-Stevenhagen-Streng =⇒ such data correspond with finitely
many exceptions to isogeny classes of pairing-friendly ordinary
g -dimensional abelian varieties over prime fields
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Heuristics for K fixed

Easier to work with triples (r , π, p) where π is a p-Weil number in K
such that K = Q(π)

Each datum (r ,M, p) corresponds to |Aut(K )| such triples

Need to fix a CM-type Φ on K and consider only p-Weil numbers
coming from Φ

Using uniform distribution assumptions about the congruence classes
of p-Weil numbers modulo prime ideals of K dividing r , together with
the Theorem, one is led to the following
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Heuristics for K fixed

Recall notation:

wK number of roots of unity in K , hK̂ class number of K̂ , hΦ̂ order of

class group Cl(Φ̂) as above
e(k,K ) degree of Q(ζk)∩K over Q (where Q(ζk) is the k th cyclotomic
field)

Fixed K heuristic estimate

Let g ≥ 2, k ≥ 2 be integers, and let ρ0 > max(1, g
ϕ(k) ) be a real number

such that ρ0 6= g . Fix a CM-field K of degree 2g , a CM-type Φ on K and
let e(k,K ), wK , hK̂ and hΦ̂ be as above. Then the number of triples

(r , π, p) as above with r ≤ x and p ≤ r
ρ0
g that come from Φ is equivalent

as x →∞ to
e(k ,K )gwKhΦ̂

ρ0hK̂

∫ x

2

du

u2− ρ0
g (log u)2
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Heuristics for K fixed

Works also when g = 1, provided k ≥ 3 and K 6= Q(ζk)

When Φ is primitive, by (ii) of the Proposition all but finitely many
p-Weil numbers π coming from Φ satisfy K = Q(π), so get estimate
for number of isogeny classes of ordinary-pairing friendly abelian
varieties A with End(A)⊗Q ' K and Frobenius π coming from Φ.

The integral converges if and only if ρ0 ≤ g

expect only finitely many triples if ρ0 < g
exclude boundary case ρ0 = g
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Heuristics for K fixed

Effect of polynomial families

Construction of Brezing-Weng, Freeman-Scott-Teske when g = 1,
Freeman in general
r0(u) ∈ Z[u], p0(u) ∈ Q[u], π0(u) ∈ K [u] such that

p0(u) is irreducible and π0(u)π0(u) = p0(u)
r0(u) is irreducible with positive leading coefficient and Q[u]/r0(u)
contains a subfield isomorphic to K
r0(u) divides Φk(p0(u)) and NK/Q(π0(u)− 1)

there exist integers h ≥ 1, u0 such that r0(u0)
h ∈ Z, p(u0) ∈ Z and

gcd
{ r0(u0)p(u0)

h

∣∣ u0,
r0(u0)

h
, p(u0) ∈ Z

}
= 1

Under these conditions, it is conjectured that there are infinitely many
u0 ∈ Z such that r0(u0)

h and p0(u0) are simultaneously prime, so that
π0(u0) is a p0(u0)-Weil number in K

If so, get infinite set of data ( r0(u0)
h ,Mu0 , p0(u0)), where Mu0 minimal

polynomial of π0(u0)
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Heuristics for K fixed

As u0 grows, the rho-value g log p0(u0)
log (r0(u0)/h) approaches g deg(p0)

deg(r0)

Define g deg(p0)
deg(r0) to be the ρ-value of the polynomial family

Precise heuristic asymptotic formula for the number N (X ) of u0 with

|u0| ≤ X such that r0(u0)
h and p0(u0) simultaneously prime

(Bateman-Horn, K. Conrad):

N (X ) ∼ C
X

(log(X ))2

where C > 0 depends only on r0(u) and p0(u)

Deduce that if

g
deg(p0)

deg(r0)
< ρ0 < g

(
1 +

1

deg(r0)

)
,

the polynomial family will produce more triples (r , π, p) then
predicted by the K fixed heuristic estimate
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Heuristics for K fixed

Only known example of this:

g = 1, k = 12, K = Q(
√
−3), the Barreto-Naehrig family:

r0(u) = 36u4 + 36u3 + 18u2 + 6u + 1, π0(u) = t0(u)+y0(u)
√
−3

2 , where

t0(u) = 6u2 + 1, y0(u) = 6u2 + 4u + 1

So, Bateman-Horn predicts more data than fixed K heuristic estimate
when 1 < ρ0 < 1.25
Data seems consistent with idea that the fixed K heuristic estimate
predicts asymptotically the number of data not belonging to the
Barreto-Naehrig family
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Heuristics for K fixed

Numerical data (K fixed)

g = 1

easy, since p-Weil numbers are just generators of principal prime ideals
of degree one,
the formulae simplify, since K̂ = K is imaginary quadratic and
cl(Φ̂) = {1}
number of triples (r , π, p) with r ≤ x , p ≤ rρ0 , ππ expected to be
asympototic to

e(k ,K )wK

ρ0hK

∫ x

2

du

u2−ρ0 (log u)2

boring, since apart from obvious constraints like r ≡ 1 (mod k) and r
splits in K , there seems no way of counting data other than checking
all possible values of r ≤ x , p ≤ rρ0 one-by-one
at most a couple of minutes on a laptop suffices to produce meaningful
data for given k, K (say r ≤ 2× 108)
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Heuristics for K fixed

g ≥ 2

in practice g = 2 or g = 3, one example with g = 4
need to determine, for each p, whether there exists a p-Weil number in
K (and whether it comes from Φ, though this is not a problem in cases
where there is only one equivalence class of primitive CM-types)

factorize p in K and make a list D(p) of all decompositions pOK = aa
ignore those decompositions that come from proper CM subfields pf K
test whether a is principal and if so, find a generator γ
test whether the unit η such that γγ = pη is of the form εε
if so, π := γ

ε
is a p-Weil number generating a, and every p-Weil

number generating a is of the form ωπ for some root of unity ω in K

some p can be eliminated by congruence considerations, which imply
that D(p) must be empty; especially if the maximal abelian subfield M
of L or M ∩ K is large
need from 40 minutes to several hours to obtain meaningful data for
given k , K
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Heuristics for K fixed

Presentation of the data

N(k ,K , ρ0, (a, b)), the number of data corresponding to isogeny
classes of pairing-friendly abelian varieties with a ≤ r ≤ b

I = I (k ,K , ρ0, (a, b)) predicted value, i. e.

I =
e(k ,K )gwKhΦ̂

|Aut(K )|ρ0hK̂

∫ b

a

du

u2− ρ0
g (log u)2
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Heuristics for K fixed

Example with g = 2, G cyclic

ρ0 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 I k = 8 k = 24 I k = 16 k = 32 I

2.8 2 3 1 0 0 0 1.02 7 1 2.03 3 4 4.07

2.9 4 3 2 0 3 1 1.74 8 1 3.48 7 5 6.97

3.0 8 3 6 1 5 2 3.00 16 3 6.00 10 11 11.99

3.1 14 5 8 2 10 3 5.18 20 5 10.36 22 17 20.73

3.2 22 9 9 6 13 5 8.99 23 15 17.98 43 33 35.96

3.3 30 14 15 12 26 14 15.66 36 30 31.31 63 58 62.62

3.4 46 27 26 23 40 31 27.37 61 55 54.73 112 104 109.46

3.5 68 51 59 38 59 49 48.00 99 110 96.00 178 187 192.00

Values of N(k ,K , ρ0, (104, 5 · 105)) for K = Q[X ]/(X 4 + 4X 2 + 2).

Invariants: wK = 2, hΦ̂ = hK̂ = 1, G cyclic.
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Heuristics for K fixed

Example with g = 2, G cyclic

ρ0 k = 2 k = 3 k = 4 k = 12 k = 24 k = 36 I k = 5 k = 10 k = 15 k = 20 k = 25 I

2.5 0 3 0 2 2 2 1.04 2 4 9 2 4 4.15

2.6 2 3 2 3 2 6 1.75 6 10 12 3 6 7.01

2.7 2 5 2 3 4 7 2.98 10 22 17 5 6 11.91

2.8 2 6 2 6 6 10 5.08 14 26 29 14 9 20.33

2.9 6 9 8 8 9 10 8.71 26 46 45 32 22 34.84

3.0 10 15 14 18 17 18 14.99 64 70 72 49 51 59.97

3.1 16 27 20 32 24 27 25.91 106 124 125 83 93 103.63

3.2 26 44 43 52 35 50 44.95 176 168 210 150 162 179.79

3.3 70 76 72 82 72 87 78.28 302 302 335 282 319 313.12

3.4 112 142 140 143 130 141 136.83 574 560 597 534 578 547.30

3.5 212 250 241 258 235 251 240.00 1000 1000 1049 977 1006 959.99

Values of N(k ,K , ρ0, (104, 5 · 105)) for K = Q(ζ5).

Invariants: wK = 10, hΦ̂ = hK̂ = 1, G cyclic.
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Heuristics for K fixed

Example with g = 2, G dihedral

ρ0 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 I k = 12 k = 24 k = 36 I

2.7 2 0 0 1 2 2 1.19 2 2 2 2.38

2.8 2 2 2 4 3 3 2.03 2 4 6 4.07

2.9 6 5 3 6 3 4 3.48 8 8 9 6.97

3.0 6 8 6 10 6 7 6.00 17 14 11 11.99

3.1 8 13 11 11 10 14 10.36 25 25 17 20.73

3.2 16 23 19 20 17 25 17.98 44 43 36 35.96

3.3 32 31 26 34 27 39 31.31 65 71 64 62.62

3.4 58 59 56 57 54 66 54.73 116 116 115 109.46

3.5 100 97 93 93 96 117 96.00 206 195 191 192.00

Values of N(k ,K , ρ0, (104, 5 · 105)) for K = Q[X ]/(X 4 + 8X 2 + 13).

Invariants: wK = 2, hΦ̂ = hK̂ = 2, G dihedral.
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Heuristics for K fixed

Example with g = 3, G cyclic

ρ0 k = 2 k = 4 k = 5 I k = 3 k = 6 I k = 9 k = 18 I

4.0 6 3 0 2.99 2 4 5.99 22 18 17.97

4.1 8 6 2 4.27 6 8 8.54 34 24 25.62

4.2 10 6 6 6.10 10 18 12.20 46 44 36.60

4.3 14 10 8 8.73 14 22 17.46 64 54 52.38

4.4 16 11 13 12.52 20 30 25.04 82 72 75.13

4.5 24 15 23 17.99 30 38 35.98 124 116 107.94

4.6 32 24 30 25.90 50 62 51.79 180 160 155.37

4.7 44 34 42 37.34 80 80 74.68 260 236 224.05

4.8 68 51 62 53.94 114 116 107.88 390 330 323.63

4.9 90 71 82 78.04 166 162 156.09 568 454 468.27

5.0 136 104 114 113.11 250 224 226.22 812 658 678.66

5.1 224 169 159 164.19 380 328 328.38 1238 944 985.15

Values of N(k ,K , ρ0, (104, 5 · 105)) for K = Q(ζ9).

Invariants: wK = 18, hΦ̂ = hK̂ = 1, G cyclic.
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Heuristics for K fixed

Example with g = 3, G of order 12

ρ0 k = 2 k = 4 k = 5 k = 32 I k = 3 k = 6 k = 24 I

3.9 0 3 0 0 1.05 2 4 3 2.10

4.0 0 3 0 0 1.50 2 4 5 2.99

4.1 0 3 0 1 2.13 4 6 7 4.27

4.2 2 3 0 2 3.05 6 6 10 6.10

4.3 4 5 0 4 4.37 8 6 15 8.73

4.4 6 5 2 6 6.26 14 8 21 12.52

4.5 12 8 6 9 9.00 20 14 32 17.99

4.6 16 12 9 13 12.95 22 24 53 25.90

4.7 22 15 13 20 18.67 32 34 67 37.34

4.8 40 23 24 30 26.97 44 50 84 53.94

4.9 50 35 32 42 39.02 62 80 119 78.04

5.0 64 52 57 58 56.55 110 118 160 113.11

5.1 88 74 96 84 82.10 164 170 214 164.19

Values of N(k ,K , ρ0, (104, 5 · 105)) for K = Q[X ]/(X 6 + 24X 4 + 144X 2 + 27).

Invariants: wK = 6, hΦ̂ = 1, hK̂ = 2, G of order 12.
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Heuristics for K fixed

Example with g = 3, |G | = 24

ρ0 k = 2 k = 3 k = 4 k = 5 k = 6 I k = 7 k = 14 k = 35 I

4.4 0 2 0 2 3 1.04 5 2 4 3.13

4.5 0 2 0 2 4 1.50 10 4 4 4.50

4.6 2 2 0 3 5 2.16 11 5 6 6.47

4.7 2 3 0 4 6 3.11 15 7 10 9.34

4.8 2 6 3 6 8 4.49 16 14 11 13.48

4.9 2 8 4 8 8 6.50 23 23 17 19.51

5.0 8 13 6 15 10 9.43 37 37 25 28.28

5.1 12 14 9 18 14 13.68 48 49 40 41.05

Values of N(k ,K , ρ0, (104, 5 · 105)) for K = Q[X ]/(X 6 + 35X 4 + 364X 2 + 1183).

Invariants: wK = 2, hΦ̂ = 4, hK̂ = 16, G of order 24.
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Heuristics for K fixed

Example with g = 4, |G | = 24

k = 4 k = 5 heuristic k = 3 k = 6 heuristic
ρ0 NΦ6 NΦ8 NΦ6 NΦ8 IΦ6 = IΦ8 NΦ6 NΦ8 NΦ6 NΦ8 IΦ6 = IΦ8

6.0 5 9 16 12 9.00 16 20 18 14 18.00

6.1 6 11 18 19 11.82 20 24 26 20 23.64

6.2 12 14 21 26 15.54 30 28 36 28 31.09

6.3 21 25 27 32 20.47 42 38 56 38 40.93

6.4 31 39 32 37 26.97 56 62 74 50 53.94

6.5 40 51 41 46 35.57 68 74 94 62 71.15

6.6 49 64 53 55 46.96 90 96 128 82 93.94

6.7 62 81 74 72 62.07 136 130 152 116 124.14

6.8 85 104 89 94 82.10 176 176 196 152 164.19

6.9 117 133 118 131 108.68 240 216 236 222 217.36

7.0 157 167 159 171 144.00 300 286 300 314 288.00

Two inequivalent primitive CM types, Φ6 with [K̂ : Q] = 6 and Φ8 with K̂ = K

Values of NΦi
(k ,K , ρ0, (104, 5 · 105)) for the field

K = Q[X ]/(X 8 + 78X 6 + 1323X 4 + 7401X 2 + 9801).

Invariants: wK = 6, hΦ̂6
= 4, hK̂6

= 8, hΦ̂8
= 2, hK̂8

= 4.
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Heuristics with fixed maximal real subfield

Heuristics with fixed maximal real subfield

Wanted ρ close to one, but K fixed heuristic estimate suggests we
can expect infinitely many examples only when ρ0 > g

So, what happens if K is allowed to vary?

We suppose K+
0 is a totally real field and look at triples (r , π, p) with

K+
0 (π) quadratic over K+

0

(x − π)(x − π) = x2 − τx + p with every real conjugate of τ
satisfying |τ | ≤ 2

√
p, and conversely such (p, τ) give rise to p-Weil

numbers π and π

d0 discriminant of K+
0

As X →∞, the number of algebraic integers τ ∈ K+
0 all of whose real

conjugates satisfy |τ | ≤ X is asymptotically equivalent to (2X )gd
−1/2
0
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Heuristics with fixed maximal real subfield

Using this, asymptotics of sums of the form
∑

p≤U,p prime p
α and

hypotheses of uniform distribution of Weil numbers π modulo ideals
dividing r , we obtain

Fixed K+
0 heuristic estimate

Let g ≥ 1, k ≥ 2 be integers with (g , k) 6= (1, 2), let K+
0 be a totally real

field of degree g and let ρ0 > max(1, g
ϕ(k) ) be a real number with

ρ0 6= 2g
g+2 . Then the number R(k ,K+

0 , ρ0, x) of triples (r , π, p) with

[K+
0 (π) : K+

0 ] ≤ 2 and r ≤ x satisfies as x →∞

R(k ,K+
0 , ρ0, x) ∼

g4g+1e(k ,K+
0 )

ρ0(g + 2)d
1/2
0

∫ x

2

uρ0

(
1
2

+ 1
g

)
−2du

(log u)2
.

Here d0 denotes the discriminant of K+
0 and e(k ,K+

0 ) the degree of
K+

0 ∩Q(ζk) over Q.
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Heuristics with fixed maximal real subfield

Expect R(k,K+
0 , ρ0, x) to tend to infinity with x for all

ρ0 > max(1, g
ϕ(k) ) when g = 2 but not when g > 2

Can compute R(k,K+
0 , ρ0, x) as follows

if r ≤ x , for every real conjugate of τ : |τ | ≤ 2
√
p ≤ 2x

ρ0
2g

make a list L of all integers τ ∈ K+
0 all of whose conjugates satisfy

|τ | ≤ 2x
ρ0
2g

for each τ ∈ L, factor Φk(τ − 1) into prime ideals in K+
0 and make a

list M(τ) of all degree one primes r+ dividing Φk(τ − 1) of norm r

such that x ≥ r ≥ ( |τ |2 )
2g
ρ0 for every real conjugate of τ

for each r+ ∈M(τ), search for primes p ≤ x
ρ0
g such that p ≡ τ − 1

(mod r+) and |τ | ≤ 2
√
p for every real conjugate of τ

Problem: need to factor Φk(τ − 1) in K+
0

Hence: only works for k with ϕ(k) small

On the other hand: when ρ0 small, we diminish the number of cases
to consider
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Heuristics with fixed maximal real subfield

Presentation of the data

Rc(k ,K+
0 , ρ0, (a, b)) expected number of data (r ,M, p) corresponding

to isogeny classes of pairing-friendly abelian varieties with a ≤ r ≤ b
(so Rc = R/|Aut(K+

0 )|)
J = J(k ,K+

0 , ρ0, (a, b)) predicted value, i. e.

J =
g4g+1e(k ,K+

0 )

|Aut(K+
0 )|ρ0(g + 2)d

1/2
0

∫ b

a

uρ0

(
1
2

+ 1
g

)
−2du

(log u)2
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Heuristics with fixed maximal real subfield

k 3 4 5 6 7 8 9 10 11 12 13 14

Rk 440 395 496 521 515 445 467 487 538 514 516 459

k 15 16 17 18 19 20 21 22 23 24 25 26

Rk 460 453 443 460 513 457 458 486 477 477 460 462

k 27 28 29 30 31 32 33 34 35 36 37 38

Rk 506 521 441 530 486 467 494 518 480 466 471 514

k 39 40 41 42 43 44 45 46 47 48 49 50

Rk 510 523 472 478 459 427 459 454 479 478 497 482

Values of Rk = Rc(k ,Q, 1.1, (108 − 2× 107, 108 + 2× 107)) for 3 ≤ k ≤ 50

Note: J = J(k ,Q, 1.1, (108 − 2× 107, 108 + 2× 107)) ≈ 455.0 for all k ≥ 3
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Heuristics with fixed maximal real subfield

ρ0 k = 3 k = 4 k = 5 k = 6 k = 7 k = 12 J k = 8 J

1.0 1 0 0 0 0 1 0.16 0 0.33

1.1 1 0 0 1 0 1 0.36 0 0.73

1.2 2 0 0 1 2 2 0.83 1 1.65

1.3 4 1 0 1 3 3 1.92 1 3.85

1.4 7 2 5 5 4 6 4.59 7 9.18

1.5 15 11 14 15 12 17 11.21 22 22.42

1.6 36 22 28 34 25 37 27.95 62 55.90

1.7 81 68 62 88 62 80 71.04 157 142.09

1.8 200 194 192 219 161 210 183.80 384 367.60

1.9 493 518 467 496 534 543 483.16 940 966.33

2.0 1346 1418 1267 1331 1295 1321 1288.45 2572 2576.91

Values of Rc(k ,K+
0 , ρ0, (103, 105)) for K+

0 = Q(
√

2).
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Heuristics with fixed maximal real subfield

d k =3 k =4 k =5 k =6 k =12 J d k =3 k =4 k =5 k =6 k =12 J

2 1346 1418 1267 1331 1321 1288.45 26 365 408 368 374 358 357.35

3 1144 1093 1049 1103 2199 1052.02 29 675 718 688 662 660 676.73

5 1650 1808 3306 1670 1703 1629.78 30 356 338 322 346 354 332.68

6 789 794 774 753 751 743.89 31 351 351 333 345 328 327.27

7 755 718 634 667 708 688.71 33 643 687 621 664 640 634.39

10 659 635 573 599 616 576.21 34 325 324 336 287 291 312.50

11 574 580 534 553 567 549.40 35 319 341 285 311 349 308.00

13 1090 1043 1064 975 1084 1010.75 37 634 596 654 614 609 599.12

14 521 526 494 491 432 486.99 38 309 320 299 313 302 295.59

15 486 460 487 443 475 470.48 39 325 334 280 307 306 291.78

17 967 954 952 880 902 883.87 41 609 651 580 537 602 569.14

19 422 480 450 395 412 418.03 42 320 280 316 303 255 281.16

21 883 753 799 798 810 795.25 43 302 300 296 274 300 277.88

22 396 415 405 379 414 388.48 46 307 289 258 300 253 268.66

23 377 393 418 378 396 379.94 47 273 258 311 257 252 265.79

Values of Rc(k ,Q(
√
d), 2.0, (103, 105)) for k∈{3, 4, 5, 6, 12} and d≤50 squarefree.

Entries in red show the cases where e(k ,Q(
√
d)) = 2. Otherwise e(k ,Q(

√
d)) = 1
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Heuristics with fixed maximal real subfield

ρ0 k = 3 k = 4 k = 5 k = 6 J k = 7 J

1.5 3 0 1 0 0.65 2 1.96

1.6 3 0 1 1 1.20 2 3.60

1.7 10 11 1 3 2.22 6 6.66

1.8 10 11 1 5 4.14 9 12.41

1.9 10 28 1 9 7.75 24 23.26

2.0 18 42 1 15 14.61 30 43.84

2.1 32 53 12 35 27.70 77 83.10

2.2 144 82 40 68 52.78 230 158.33

2.3 197 82 97 160 101.05 324 303.15

2.4 244 232 97 236 194.37 716 583.11

2.5 354 519 280 362 375.53 1028 1126.60

2.6 557 1048 714 865 728.59 1647 2185.76

2.7 1211 1654 1314 1132 1419.19 3267 4257.58

2.8 2474 3050 2640 1598 2774.87 9820 8324.62

2.9 5136 5527 5330 3993 5445.06 19124 16335.18

3.0 9378 10116 8179 11699 10721.16 35287 32163.49

Values of Rc(k ,K+
0 , ρ0, (103, 104)) for K+

0 = Q(ζ7 + ζ−1
7 ).
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Heuristics with fixed maximal real subfield

When g gets large

As g grows, the condition p ≤ r
ρ0
g , becomes more and more restrictive

therefore get few values of r and p, and lots of τ ’s with all real
conjugates |τ | ≤ 2

√
p

for r , p fixed: as τ varies, the roots π and π of x2 − τx + p generate
different CM fields with maximal real subfield equal to K+

0
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THANK YOU FOR YOUR ATTENTION!
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