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1-Introduction

real algebraic set defined in Rk by equations of degree d

number of connected components O(d)k

(polynomial in the degree, and singly exponential in the number of variables, sharp)
famous result by Oleinik, Petrowski, Thom and Milnor

Important problems

- deciding connectivity : designing (efficient) algorithms for deciding whether two
points belong to the same connected component of an algebraic set

- counting the number of connected components of an algebraic set

Related to robot motion planing, and also to computing the topology, such as
determining the Betti numbers.
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Cylindrical algebraic decomposition

Schwartz-Sharir, first algorithm for solving this problem, based on Collins cylin-
drical algebraic decomposition
-doubly exponential complexity
-use of resultant, subresultants
-eliminating one variable produces polynomials of degree d2 in k− 1 variables
-possible to control adjacencies between cells, if all polynomials monic with respect
to the elimination variable (through a linear change of variable)

π2

π1

Figure 1. A cylindrical decomposition adapted to the sphere in R3
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Goals of the talk: avoid double exponential complexity

2- describe the classical roadmap construction

3- give motivations to do better

4- describe the baby step - giant step results of Basu, R., Safey, Schost

5- discuss divide and conquer current research by Basu, R. giving divide and
conquer roadmaps
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2- Classical roadmaps

Definition of roadmap

what is meant by a roadmap ?

Definition 1. S ⊂Rk, semi-algebraic set, M⊂S finite set of points
roadmap for (S, M) : semi-algebraic set RM(S, M) of dimension at most one
contained in S satisfying:

1. RM1 For every connected component C of S, C ∩RM(S,M) is connected.

2. RM2 For every x ∈ R and for every connected component D of Sx, D ∩
RM(S,M)� ∅,
(Sx=S ∩π1

−1(x) for x∈R, and π1:R
k→R the projection map onto the first

coordinate)
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Outline of the classical roadmap algorithm

bounded non singular (generic) hypersurface Zer(Q,Rk)
geometric ideas due to Canny
description based on Basu, Pollack, R.

key ingredient ; construction of a finite set of points intersecting every connected

component of Zer(Q,Rk): X1-critical points on Zer(Q,Rk)

for more general situations, X1-pseudo-critical points=limits of the X1-critical
points of a bounded nonsingular algebraic hypersurface defined by a particular
infinitesimal deformation of the polynomial Q

projections on the X1-axis : X1− pseudo-critical values

key connectivity property : connectivity controlled by pseudo-critical values

Proposition 2. Let Zer(Q, Rk) be a bounded algebraic set and S a connected

component of Zer(Q, Rk)[a,b]. If [a, b] \ {v} contains no X1-pseudo-critical value

on Zer(Q,Rk), then Sv is semi-algebraically connected.
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for classical roadmap: X2-pseudo-critical points parametrized by X1

construct the “silhouette” : set of X2-pseudo-critical points on Zer(Q, Rk)
parametrized by X1, obtained by following, as x varies on the X1-axis, the X2-

pseudo-critical points on Zer(Q,Rk)x

defines curves and endpoints on Zer(Q,Rk)

include for every x∈R the X2-pseudo-critical points of Zer(Q,Rk)x, so meet every

semi-algebraically connected component of Zer(Q,Rk)x.

set of curves satisfy RM2

however, RM1 might not be satisfied
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Figure 2. X2-(pseudo-)critical points on a torus in R3

.
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to ensure property RM1, needed to add more curves to the roadmap

distinguished values D : union of the X1-pseudo-critical values, and the first coor-
dinates of the endpoints of the curves

distinguished hyperplane : hyperplane defined by X1=v, where v is a distinguished
value

distinguished values : v1<	 <vN

above each interval (vi, vi+1) collection of curves Ci meeting every connected com-

ponent of Zer(Q,Rk)v for every v ∈ (vi, vi+1)

above each distinguished value vi, a set of distinguished points Mi

each curve in Ci has an endpoint in Mi and another in Mi+1

the union of the Mi contains M

C the union of the Ci
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Definition 3. S, S0, S1 semi-algebraic sets with S0⊂S, S1⊂S

(S,S0,S1) has good connectivity property if for every connected component C of S,

C ∩ (S0∪S1) is connected.

key connectivity result proved in Basu, Pollack, R.

Proposition 4. (Zer(Q,Rk), C ,Zer(Q,Rk)D) has good connectivity property

X1

X2

X3

Figure 3. The roadmap of the torus
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in order to construct a roadmap of Zer(Q, Rk), repeat the construction in each
distinguished hyperplane Hi defined by X1 = vi with input Q(vi, X2, 	 , Xk) and
the distinguished points in Mi by making recursive calls to the algorithm

proposition proved in Basu, Pollack, R..

Proposition 5. RM(Zer(Q,Rk),M) roadmap for (Zer(Q,Rk),M).

at each recursive call, hypersurface, in a smaller dimensional ambiant space

Complexity analysis

dO(k2) number of recursive calls in the roadmap algorithm :

depth of the recursion k

dO(k2)= dO(k)×
 × dO(k)

�

k times

in the recursive calls, computation in an algebraic extension of the base field since
the distinguished values are algebraic numbers, necessary to analyze carefully the
complexity of each arithmetic operation over this extension in terms of the number
of operations in the base ring
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Summary

classical roadmap algorithms based on Canny’s construction proceeds by

-first construct the “silhouette”, consisting of curves in the X1-direction intersecting
each connected component of the fiber

-then make recursive calls to the same algorithm at hyperplane sections of Zer(Q,

Rk) where the description of the silhouette changes to ensure connectivity inside
every connected component

the number of hyperplane sections is O(d)k

the dimension of the ambient space drops by 1 at each recursive call

the degree with the remaining variables remains d

complexity dO(k2)
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Discussion on classical roadmap

Canny (followed by others : Gournay Risler, Grigoriev Vorobjov, Heintz
Solerno R., Basu Pollack R.) algorithms with singly exponential complexity

all based on Canny’s geometric idea : construction of an one-dimensional semi-
algebraic subset, called a roadmap, connected inside every connected component

construction of the roadmap based on recursive calls to itself on several (O(d)k) in
(k− 1) dimensional slices, each obtained by fixing the first coordinate at a “critical
level”

fixing one coordinate (as a zero of a polynomial of degree O(d)k) produces a poly-
nomial of degree d in k− 1 variables

dO(k2) number of recursive calls in the roadmap algorithm :

depth of the recursion k

dO(k2)= dO(k)×
 × dO(k)
�

k times
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genericity issues ... several contributions ...

finally, algorithm with complexity dO(k2) for a general algebraic set (Basu Pollack
R.), using infinitesimal deformation

deformations, useful for complexity, introduce infinitesimals

now R a real closed field (such as the field of real numbers R) but not necessarily
archimedean (such as the field of real Puiseux series R〈ζ 〉)

“connected components” need to be replaced by “semi-algebraically connected com-
ponents” (for readibility, in this talk we write always “connected component”)
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Deformation technique explained by an example

Let Q∈R[X1, X2, X3] be defined by

Q=X2
2−X1

2+X1
4+X2

4+X3
4.

Figure 4.
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deformation

Def(Q, ζ)=Q2− ζ (X1
10+X2

10+X3
10+1).

Figure 5.

semi-algebraic set defined by Def(Q, ζ)≤ 0 (i.e. the part inside the larger compo-
nent but outside the smaller ones) homotopy equivalent to Zer(Q,R3)
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3- Motivation to improve classical roadmaps

So, complexity of roadmaps dO(k2)....

Some motivation behind trying to improve this result

• number of connected components of an algebraic set Zer(Q,Rk) is bounded
by O(d)k where d= deg (Q)

• algorithms for testing emptiness and for computing the Euler-Poincaŕe char-

acteristic with complexity dO(k)

• D’Acunto, Kurdyka : geodesic diameter of any connected component of
a real variety (defined by polynomials of degree d) contained in an unit ball

bounded by dO(k)

• many other algorithms in real algebraic geometry use roadmap construction
as an intermediate step (i.e. describing connected components, computing
higher Betti numbers)

Is there a way to get rid of this gap ?

rather difficult problem with no progress till very recently
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4- Baby-step giant-step roadmap

recent method for roadmaps, proposed by Safey and Schost

applied successfully by them to smooth real algebraic hypersurfaces

new recursive scheme, dimension drops by k
√

in each recursive call

depth of the recursive calls at most k
√

complexity of dO(k k
√

)

dO(k k
√

)= dO(k)×
 × dO(k)

�

k
√

times
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techniques used : complex algebraic geometry, smoothness of polar varieties for
generic projections

generic coordinates necessary : non-singularity of polar varieties only true for a
Zariski-dense set

important restriction, no known method for making such a choice of generic coor-
dinates deterministically within this improved complexity bound

randomized (rather than deterministic) algorithm for computing roadmaps

possibly :cases where the algorithm terminates and gives a wrong result
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in contrast, algorithm for constructing classical roadmaps in Basu Pollack R.
semi-algebraic in nature.

greater flexibility of semi-algebraic geometry :take sums of squares (one single
equation for any algebraic set (!), avoids genericity requirements for coordinates

technique used in Basu, Pollack, R. : infinitesimal deformation of the given
variety so that the original coordinates are good

infinitesimal deformation uses only one infinitesimal

does not affect the asymptotic complexity class

Combine both approaches !
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Baby-step giant-step results

main result of Basu, R., Safey, Schost

D ordered domain contained in a real closed field R

V ⊂Rk zero set of a polynomial of degree 6dwith coefficients in D

Theorem 6.

1. algorithm for constructing a roadmap for V using dO(k k
√

) arithmetic oper-
ations in D

2. algorithm for counting the number of connected components of V using

dO(k k
√

) arithmetic operations in D.

3. algorithm for deciding whether two given points belong to the same connected

component of V using dO(k k
√

) arithmetic operations in D.

-points described by real univariate representations of degree 6dO(k)) (see Basu,
Pollack, R.
-general real closed fields natural framework, because use of deformations, neces-
sary for complexity issues
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The baby-step giant-step method

main difference between classical roadmap algorithms and baby-step giant-step
roadmap algorithms

Zer(Q,Rk) bounded hypersurface

instead of considering curves in the X1-direction (think of a finite number of X2-
critical points, above each x∈R) and making recursive calls at hyperplane sections

of Zer(Q,Rk) corresponding to critical values of X1, so that the dimension of the
ambient space drops by 1

consider a p-dimensional subset V 0 of Zer(Q, Rk) where 1 ≤ p ≤ k (think of a
finite number of Xp+1-critical points, above each y ∈ Rp) and make recursive
calls at (k− p)-dimensional affine spaces intersected with Zer(Q,Rk), so that the
dimension of the ambient space drops by p
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special (generic) situation

(V ,M, p, V 0,M0)

such that

1. V = Zer(Q, Rk) bounded hypersurface, such that the critical points of the
map π1 on V form the finite set M⊂V ;

2. V 0 ⊂ V closed semi-algebraic set of dimension p, 1 ≤ p < k, such that for
each y∈Rp, Vy

0 finite set of points having non-empty intersection with every
connected component of Vy;

3. M0⊂V finite such that the intersection of M0 with every connected com-
ponent of Va

0 is non-empty, for a∈D0=π1(M0). Moreover for every interval
[a, b] and c ∈ [a, b] with {c} ⊃D0∩ [a, b], if D is a connected component of

V[a,b]
0 , then Dc is a connected component of Vc

0.
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key connectivity result in Basu, R., Safey, Schost, generalizing Proposition 4
and a result by Safey and Schost

Proposition 7. Let N =π[1,p](M∪M0)
(V , V 0, VN) has good connectivity property

in order to produce a roadmap of Zer(Q,Rk)

baby-steps: compute a classical roadmap of V 0 passing through VN
0 , computed by

an algorithm directly adapted from Basu, Pollack, R., using that V 0 is special
(zero-dimensional fibers parametrized by Rp, so that the depth of the recursion is
p), in time dO(pk)

giant-steps compute the roadmap of a finite set of fibers in a (k − p)-dimensional
ambient space, using recursive calls

at each recursive call, hypersurface, in a smaller dimensional ambiant space
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general case uses sums of squares, a deformation technique and a limit process

fixing p= k
√

is the optimal choice

Main ideas clear and straightforward

many technical difficulties to reach the complexity dO(k k
√

) for a general algebraic
set

fixing a whole block of k
√

variables at a time necessitates introducing a new kind
of algebraic representation, called “real block representation”... complexity issues

limit process ... for a point no problem, for a curve more complicated .... complexity
issues

Basu,R., Safey, Schost very long 50 pages paper
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4- Divide and conquer

what next ? divide and conquer very natural idea

S=Zer(Q,Rk) general algebraic set

consider a k/2-dimensional subset S0 of S (think of a finite number of critical
points, above each y ∈R

k/2
) and make recursive calls

- at S0 itself
- at S1, union of certain (k/2)-dimensional linear spaces intersected with S

prove that (S, S0, S1) have good connectivity property

main difficulty to overcome: in recursive calls, no more an hypersurface in a smaller
ambiant space but algebraic sets of various codimensions (even if the starting point
is an hypersurface)

even if the original situation is sufficiently generic, such genericity properties are
difficult to maintain throughout the algorithm ...
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Two approaches

-work in progress of Safey and Schost in the case of a smooth hypersurface (prob-
abilistic) using polar varieties

-work in progress of Basu and R. in the case of a general real algebraic set, using
deformations and semi-algebraic techniques
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Some indications on Basu R. approach

Definition of a G-roadmap

for genericity reasons, introduce G polynomial function from Rk to R (generalizing
projection on X1)

Definition 8. A G-roadmap for S is a semi-algebraic set M of dimension at most
one contained in S which satisfies the following roadmap conditions:

− RM1 For every semi-algebraically connected component D of S, D ∩ M is
semi-algebraically connected.

− RM2 For every x∈R and for every semi-algebraically connected component
D ′ of S ∩G−1({x}), D ′∩M � ∅.
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Statement

Theorem 9.
Let V be the zero set of a polynomials of degree d in k variables and with coefficients
in an ordered domain D. We describe

1. algorithm for constructing a G-roadmap for V using
(

klog(k) d
)

klog2(k) arith-
metic operations in D

2. an algorithm for counting the number of connected components of V using
(

klog(k) d
)

klog2(k) arithmetic operations in D.

3. an algorithm for deciding whether two given points belong to the same con-

nected component of V using
(

klog(k) d
)

klog2(k) arithmetic operations in D.
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Connectivity result

1≤q < p≤k, G∈R[X1,	 ,Xk], and P ,Q⊂R[X1,	 ,Xk] be finite, card(P)=k− p,

S= {x∈Rk

N P (x)= 0, Q(x)≥ 0, ∀P ∈P , ∀Q∈Q}
special situation

(S,M, p, q,S0,M0)

such that

1. M finite set of critical points of G on S (union of critical points of G for
every zero set of P ′⊂P ∪Q).

2. S0⊂S q-dimensional semi-algebraic set such that for each for each y∈R[1,q],

Sy
0

6 S0 ∩ π[1,q]
−1 (y) finite, meets every connected component of Sy 6 S ∩

π[1,q]
−1 (y), and contains a minimizer of G over each connected component of

Sy.

3. M0 ⊂ S0 finite, meets every connected component of SG=a
0 for each a∈

D0

6 G(M0). Moreover for every interval [a, b] ⊂R and c∈[a, b], with
{c}⊃D0∩ [a, b], if D is a connected component of Sa≤G≤b

0 , then DG=c is a
connected component of SG=c

0 .
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key connectivity result, generalizing Proposition 7 (with a quite similar proof)

Proposition 10. Let N 6 π[1,q](M∪M0)

(S, S0, SN) has good connectivity property with respect to S.

In divide and conquer we take p= k/2,

rather than p= k
√

as in baby-giant.
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Divide and conquer roadmap consruction

in order to produce a G-roadmap of Zer(Q,Rk)

ideally
divide and conquer: make recursive calls to S0 (critical points) and S1 = SN (well
chosen fibers of preceeding set), each of half dimension
take critical points of critical points etc...

but
need to make deformations to ensure genericity properties
no more sums of squares (general co dimensions)
use slighly different deformation technique coming from Jeronimo, Perrucci and
Tsigaridas to reach special situation
add four infinitesimals at each level of the recursion to ensure genericity
take critical points of deformation of critical points
introduce charts for having good equations of the critical locus
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Complexity analysis (sketch)

depth of recursion : log (k)

number of recursive calls :
(

klog(k) d
)

k

number of infinitesimals introduced :O(log (k))

maximal degree with respect to X : klog(k) d

number of arithmetic operations

(

klog(k) d
)

klog 2(k)

complexity issues non trivial ...

hope for the length of a semi-algebraic path

(

klog(k) d
)

klog(k)

(cf. D’Acunto and Kurdyka)
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Open problems

supposing that the divide and conquer roadmap for general algebraic sets works

doable

• ”short” semi-algebraic path

• divide and conquet semi-algebraic sets rather than algebraic sets

to explore, improvements on

• description of connected components (parametrized roadmap)

• computation of higher Betti numbers

no ideas so far but ...

• special case of quadratic sets (improved bounds on number of connected
components, geodesic diameter), what about roadmap ?
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