Algorithms for isogeny graphs

Sorina Ionica

Ecole Normale Supérieure Paris

Inria Bordeaux 5 février 2013

Sorina Ionica 1 / 35

Cryptographic motivation

We need an abelian variety of small dimension (i.e. 1,2) defined over \mathbb{F}_q s.t. $\#A(\mathbb{F}_q)$ is divisible by a large prime number

For pairing based cryptography, use the complex multiplication method to generate curves with prescribed number of points.

→ needs precomputing the class polynomials

Sorina Ionica 2 / 35

Class polynomials in cryptography

- Let J be a (simple) abelian surface over \mathbb{C} .
- End(J) is an order of a (primitive) quartic CM field K (totally imaginary quadratic extension of a totally real number field).
- The class polynomials H₁, H₂, H₃ ∈ Q[X] parametrize the invariants of all abelian varieties A/C with End(A) ≃ O_K.

Assume p is a "good" prime

$$H_i(X) = \prod_{\operatorname{End}(A) \simeq \mathcal{O}_K} (X - j_i(A))$$

 $\#J(\mathbb{F}_p) = N_{K/\mathbb{O}}(\pi - 1)$, where π is the Frobenius endomorphism.

<ロ > < 回 > < 回 > < 巨 > く 巨 > し 至 ・ り へ ○

Sorina Ionica 3 / 35

The CRT method for class polynomial computation

Eisenträger, Freeman, Lauter, Bröker, Gruenewald, Robert:

- Select a "good" prime p.
- For each abelian surface J in the p^3 isomorphism classes
 - Check if J is in the right isogeny class.
 - Check if $\operatorname{End}(J) \simeq \mathcal{O}_K$.
- Reconstruct H_i mod p from jacobians with maximal endomorphism ring

Compute class polynomials modulo small "good" primes and use the CRT to reconstruct H_1, H_2, H_3 .

Sorina Ionica 4 / 35

Computing all abelian varieties with maximal order

Eisenträger, Freeman, Lauter, Bröker, Gruenewald, Robert:

- Select a "good" prime p.
- For each abelian surface J in the p^3 isomorphism classes.
 - Check if J is in the right isogeny class.
 - Check if $\operatorname{End}(J) \simeq \mathcal{O}_K$.
 - Generate jacobians with CM by O_K by computing horizontal isogenies* from J.
- Reconstruct H_i mod p from jacobians with maximal endomorphism ring
- *An isogeny $I: J_1 \to J_2$ is horizontal iff End $J_1 \simeq \text{End } J_2$.

Sorina Ionica 5 / 35

Pairings and endomorphism rings

I.-Joux 2010 : algorithms for horizontal isogeny and endomorphism ring computation in genus 1 by using the Tate pairing

F. Morain: "je suis sûr qu'il y a quelque chose à dire sur les matrices du Frobenius. De toute façon, tout est dans le Frobenius!"

meaning

"It's all about the Frobenius!"

Claim: Indeed, but from a computational point of view, using pairings is faster in many cases.

$$\operatorname{End}(J)\otimes \mathbb{Z}_\ell o \operatorname{End}_{\mathbb{F}_q}(\mathcal{T}_\ell(J))$$
 bijectively

Sorina Ionica 6 / 35

The endomorphism ring of an ordinary jacobian

Let K be a quartic CM field and assume that $K = Q(\eta)$ with

$$\eta=i\sqrt{a+b\frac{-1+\sqrt{d}}{2}}$$
 for $d\equiv 1 \mod 1$
 $\eta=i\sqrt{a+b\sqrt{d}}$ for $d\equiv 2,3 \mod 4$

Assume real multiplication \mathcal{O}_{K_0} has class number 1.

Let J be a jacobian of a genus 2 curve defined over \mathbb{F}_q .

J is ordinary, i.e. $\operatorname{End}(J)$ is an order of K.

$$\mathbb{Z}[\pi,\bar{\pi}]\subset \mathrm{End}(J)\subset \mathcal{O}_{\mathcal{K}}$$

Sorina Ionica 7 / 35

Computing endomorphism rings

Eisenträger and Lauter's algorithm (2005), Freeman-Lauter (2008)

<u>Idea</u>: If $\alpha: J \to J$ is an endomorphism, then $\frac{\alpha}{n}$ is an endomorphism iff $J[n] \subset \operatorname{Ker} \alpha$.

Check if an order \mathcal{O} is contained in $\operatorname{End}(J)$:

- Write down a basis for the order \mathcal{O} : $\gamma_i = \frac{\alpha_i}{n_i}$, with $\alpha_i \in \mathbb{Z}[\pi]$.
- Check if $\gamma_i \in \text{End}(J)$ by checking if α_i is zero on $J[n_i]$.

Since $n_i|[\mathcal{O}_K : \mathbb{Z}[\pi, \bar{\pi}]]$ we end up working over large extension fields!

Sorina Ionica 8 / 35

Just to give an idea...

The smallest extension field \mathbb{F}_{q^r} s.t. $J[\ell] \subset J(\mathbb{F}_{q^r})$ has degree r at most ℓ^4 .

If
$$J[\ell^2]
ot \subseteq J(\mathbb{F}_{q^r})$$
, then $J[\ell^2] \subseteq J(\mathbb{F}_{q^{r\ell}})$
$$J[\ell^3] \subseteq J[\mathbb{F}_{q^{r\ell^2}}]$$

. . .

Bottleneck: group structure computation $\implies \ell$ is small

Sorina Ionica 9 / 35

Computing the endomorphism ring

- For small ℓ, use Eisenträger-Lauter
- If ℓ is larger, use Bisson's algorithm (2012)
 - smooth relations in the class group of the order O
 - corresponding smooth horizontal isogeny chains

$$O((exp\sqrt{\log q \log \log q}))^{2\sqrt{3}+o(1)}$$

under GRH and other heuristic assumptions

□▶ 4個▶ 4厘▶ 4厘▶ 厘 900

Notations

Let $\theta \in \mathcal{O}$. We define

$$v_{\ell,\mathcal{O}}(\theta) := max_{a \in \mathbb{Z}} \{ m | \theta + a \in \ell^m \mathcal{O} \}$$

How do we compute this?

Consider a \mathbb{Z} -basis $1, \delta, \gamma, \eta$ for \mathcal{O} :

Write
$$heta=a_1+a_2\delta+a_3\gamma+a_4\eta.$$
 Then
$$v_{\ell,\mathcal{O}}(\theta):=v_{\ell}(\gcd(a_2,a_3,a_4)).$$

Sorina Ionica 11 / 35

Checking locally maximal orders at ℓ

In general, $v_{\ell,\mathcal{O}}(\theta) \leq v_{\ell,\mathcal{O}_K}(\theta)$

Take $O_{K_0}=[1,\omega]$ and $\eta=i\sqrt{a+b\omega}$, with $(b,\ell)=1$. Then $\theta=a_1+a_2\omega+(a_3+a_4\omega)\eta,\,a_i\in\mathbb{Z}$.

Lemma *

Let $\mathcal O$ be an order such that $\theta \in \mathcal O$ and $[\mathcal O_K:\mathcal O]$ is divisible by a power of ℓ . If $\max(\nu_\ell(\frac{a_3-a_4}{\ell}),\nu_\ell(\frac{\ell a_3-a_4}{\ell^2}))<\min(\nu_\ell(a_3),\nu_\ell(a_4))$ then $\nu_{\ell,\mathcal O}(\theta)<\nu_{\ell,\mathcal O_K}(\theta)$.

Let
$$v_{\ell}(\pi) = v_{\ell, \operatorname{End}(J)}(\pi)$$
.

A simple criterion: check if $v_{\ell}(\pi) = v_{\ell,\mathcal{O}_K}(\pi)$.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Sorina Ionica 12 / 35

Checking locally maximal orders at ℓ

How do we compute $v_{\ell}(\pi)$?

Proposition

 $v_{\ell}(\pi)$ is the largest integer m such that the Frobenius action on $T_{\ell}(J)$ is a multiple of the identity up to precision m.

The matrix of the Frobenius is of the form

$$\begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix} \mod \ell^k, k \le m$$

We could compute the action of the Frobenius on $J[\ell],\,J[\ell^2]\dots$

This means working over large extension fields very quickly, so NO!

Sorina Ionica 13 / 35

How do we compute $v_{\ell}(\pi)$?

2006 Schmoyer: bring pairings into play!

Sorina Ionica 14 / 35

The Weil pairing

Let A be an abelian variety defined over a field K. A[m] is the m-torsion and $\hat{A}[m] \simeq \operatorname{Hom}(A[m], \mu_m)$.

Weil pairing

$$e_m: A[m] \times \hat{A}[m] \rightarrow \mu_m$$
 is a bilinear, non-degenerate map.

If A is a principally polarized variety

$$e_m: A[m] \times A[m] \rightarrow \mu_m$$

 $(P,Q) \rightarrow e_m(P,Q).$

|ロト 4回 ト 4 章 ト 4 章 ト - 章 - 夕 Q @

We denote by $G_K = \operatorname{Gal}(\bar{K}/K)$ the Galois group.

Consider $0 \to A[m] \to A(\bar{K}) \stackrel{m\cdot}{\to} A(\bar{K}) \to 0$.

Take Galois cohomology and get connecting morphism

$$\delta: A(K)/mA(K) = H^0(G_K, A)/mH^0(G_K, A) \rightarrow H^1(G_K, A[m])$$

$$P \rightarrow F_P,$$

where we take \bar{P} such that $m\bar{P} = P$ and define

$$F_P(\sigma): G_K \rightarrow A(\bar{K})[m]$$

 $\sigma \rightarrow \sigma \cdot \bar{P} - \bar{P}.$

(ㅁ▶◀@▶◀돌▶◀돌▶ 돌 쒸였)

Sorina Ionica 16 / 35

We get the map

$$A(K)/mA(K) \times \hat{A}[m](K) \rightarrow H^{1}(G_{K}, \mu_{m})$$

 $(P, Q) \rightarrow [\sigma \rightarrow e_{m}(F_{P}(\sigma), Q)]$

bilinear, non-degenerate

Sorina Ionica 17 / 35

We get the map

$$A(K)/mA(K) \times A[m](K) \rightarrow H^1(G_K, \mu_m)$$

 $(P, Q) \rightarrow [\sigma \rightarrow e_m(F_P(\sigma), Q)]$

bilinear, non-degenerate

Sorina Ionica 18 / 35

For a principally polarized abelian variety over a finite field \mathbb{F}_q s.t. $\mu_m\subset \mathbb{F}_q$

$$H^1(G_{\mathbb{F}_q},\mu_m)\simeq H^1(Gal(\mathbb{F}_{q^m}/\mathbb{F}_q),\mu_m)\simeq \mu_m$$

We take $\bar{P} \in A(\bar{F}_q)$ such that $m\bar{P} = P$ and define

The Tate pairing

$$A(\mathbb{F}_q)/mA(\mathbb{F}_q) imes A[m](\mathbb{F}_q) o \mu_m \ (P,Q) o e_m(\pi(ar{P}) - ar{P},Q)$$

Sorina Ionica 19 / 35

Pairings on kernels

Assume there is $n \ge 1$ is s.t. $J[\ell^n] \subseteq J[\mathbb{F}_q]$ and $J[\ell^{n+1}] \nsubseteq J[\mathbb{F}_q]$, $\ell > 2$ prime (or $\pi - 1$ is divisible exactly by ℓ^n)

Let \mathcal{W} be the set of subgroups G of rank 2 in $J[\ell^n]$ which are maximal isotropic with respect to the Weil pairing.

$$k_{\ell,J} := \max_{G \in \mathcal{W}} \{k | \exists P, Q \in G \text{ s.t. } T_{\ell^n}(P,Q) \in \mu_{\ell^k} \setminus \mu_{\ell^{k-1}} \}$$

Sorina Ionica 20 / 35

One pairing, two formulae

$$A(\mathbb{F}_q)/\ell^n A(\mathbb{F}_q) \times A[\ell^n](\mathbb{F}_q) \to \mu_{\ell^n}$$

Tate

$$(P,Q) o e_{\ell^n}(\pi(ar{P})-ar{P},Q)$$
 with $\ell^nar{P}=P$ and $ar{P}
otin J(\mathbb{F}_q)$

Sorina Ionica 21 / 35

One pairing, two formulae

$$A(\mathbb{F}_q)/\ell^n A(\mathbb{F}_q) \times A[\ell^n](\mathbb{F}_q) \to \mu_{\ell^n}$$

Tate

$$(P,Q)
ightarrow e_{\ell^n}(\pi(ar{P}) - ar{P},Q)$$

with $\ell^n \bar{P} = P$ and $\bar{P} \notin J(\mathbb{F}_q)$

Lichtenbaum

$$(P,Q)
ightarrow (f_{P,\ell^n}(Q+R)/f_{P,\ell^n}(R))^{\frac{q-1}{\ell^n}}$$

with
$$f_{P,\ell^n}$$
 s.t. $\operatorname{div}(f_{P,\ell^n}) \sim \ell^n(P)$

compute in $O(n \log \ell + \log q)$ op. in \mathbb{F}_a .

22 / 35 Sorina Ionica

One pairing, two formulae

$$A(\mathbb{F}_q)/\ell^n A(\mathbb{F}_q) \times A[\ell^n](\mathbb{F}_q) o \mu_{\ell^n}$$

 \Leftarrow

Tate

$$(P,Q)
ightarrow e_{\ell^n}(\pi(ar{P}) - ar{P},Q)$$

with $\ell^n \bar{P} = P$ and $\bar{P} \notin J(\mathbb{F}_q)$

compute the Frobenius action up to precision $\geq n$.

Lichtenbaum

$$(P,Q)
ightarrow (f_{P,\ell^n}(Q+R)/f_{P,\ell^n}(R))^{rac{q-1}{\ell^n}}$$

with f_{P,ℓ^n} s.t. $\operatorname{div}(f_{P,\ell^n}) \sim \ell^n(P)$

compute in $O(n \log \ell + \log q)$ op. in \mathbb{F}_q .

Sorina Ionica 23 / 35

Computing $v_{\ell}(\pi)$

Theorem

Suppose $\pi - 1$ is exactly divisible by ℓ^n and $0 < v_{\ell,\mathcal{O}_K}(\pi) < 2n$. Then $v_{\ell}(\pi) = 2n - k_{\ell,l}$.

Proof: Galois cohomology+linear algebra

Corollary

If $0 < v_{\ell,\mathcal{O}_K}(\pi) < 2n$ and under the conditions of Lemma *, then $\operatorname{End}(J)$ is a locally maximal order at ℓ iff $k_{\ell,J} = 2n - v_{\ell,\mathcal{O}_K}(\pi)$.

Sorina Ionica 24 / 35

Computational issues

We need to get $k_{\ell,J} = \max_{G \in \mathcal{W}} \{k | T_{\ell^n} : G \times G \to \mu_{\ell^k} \text{ surjective}\}.$

There are $O(\ell^3)$ subgroups in W!

In practice, compute a symplectic basis $\{Q_1, Q_{-1}, Q_2, Q_{-2}\}$.

Get $k_{\ell,J} = \max_{j \neq -i} \{k | T_{\ell^n}(Q_i, Q_j) \text{ is a } \ell^k\text{-th primitive root of unity}\}$

Sorina Ionica 25 / 35

Algorithm

- If the $J[\ell]$ is not defined over \mathbb{F}_q , switch to \mathbb{F}_{q^r} , $r \leq \ell^4 1$.
- Compute largest integer n s.t. $J[\ell^n] \subset J(\mathbb{F}_{q'})$.
- Compute a symplectic basis $\{Q_1, Q_{-1}, Q_2, Q_{-2}\}$.
- Compute $k_{\ell,J} = \max_{i \neq -j} \{k | T_{\ell^n}(Q_i, Q_j) \text{ is a } \ell^k\text{-th primitive root of unity}\}$
- If $v_{\ell,\mathcal{O}_K}(\pi^r) = 2n k_{\ell,J}$ return true.

Sorina Ionica 26 / 35

Complexity analysis

Denote by $\mathbb{F}_{q'}$ the smallest extension field such that $J[\ell] \subset J[\mathbb{F}_{q'}]$.

Let $n \ge 1$ be the largest integer such that $J[\ell^n] \subset J(\mathbb{F}_q)$ and $u = v_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi, \bar{\pi}]])$.

Let M(r) is the cost of a multiplication in F_{q^r} .

Freeman-Lauter	This work
$O((r\ell^{u-n} + \ell^{2u})M(r\ell^{u-n})\log q) \ ext{(worst case)}$	$O(M(r)(r\log q + \ell^{2n} + n\log \ell))$

Heuristically, if u is large, we would expect u > n.

Sorina Ionica 27 / 35

Example

Consider $y^2 = 27x^6 + 869x^5 + 364x^4 + 407x^3 + 518x^2 + 47x + 806$ over \mathbb{F}_{1009} .

The index is $[\mathcal{O}_K : \mathbb{Z}[\pi, \bar{\pi}]] = 3^4$. The 3-torsion is defined over \mathbb{F}_{1009^2} .

$$\begin{array}{l} \pi^2 = 8626 - 234 \frac{1+\sqrt{109}}{2} + (-33 + 27 \frac{1+\sqrt{109}}{2}) \sqrt{702 - 13 \frac{1+\sqrt{109}}{2}} \Longrightarrow \\ \nu_{\ell,\mathcal{O}_K}(\pi^2) = 1. \end{array}$$

It took less then 2 seconds on a AMD Phenom II X2 B55 (3 GHz) to compute $k_{\ell,J}=1$ and decide that $\operatorname{End}(J)$ is locally maximal at ℓ .

The Freeman-Lauter algorithm runs over \mathbb{F}_{1009^6} and returns the same result in 60 sec.

ロ ト 4 週 ト 4 恵 ト 4 恵 ト - 夏 - 约 Q @

Sorina Ionica 28 / 35

The CRT method for computing class polynomials

- Select a "good" prime p.
- For each abelian surface J in the p^3 isomorphism classes
 - Check if *J* is in the right isogeny class.
 - Check if $\operatorname{End}(J) \simeq \mathcal{O}_K$.
 - Generate jacobians with CM by O_K by computing horizontal isogenies from J.
- Reconstruct H_i mod p from jacobians with maximal endomorphism ring

Compute class polynomials modulo small "good" primes and use the CRT to reconstruct H_1 , H_2 , H_3 .

Sorina Ionica 29 / 35

Computing horizontal isogenies

An ℓ -isogeny is an isogeny whose kernel is a subgroup of $J[\ell]$ maximal isotropic with respect to the Weil pairing.

An ℓ -isogeny $I: J_1 \to J_2$ is horizontal iff End $J_1 \simeq \text{End } J_2$.

Given by the action of the Shimura class group

 $\{(\mathfrak{a},\alpha)|\mathfrak{a} \text{ is a fractional } \mathcal{O}_{\mathcal{K}}\text{-ideal with }\mathfrak{a}\bar{\mathfrak{a}}=(\alpha) \text{ with } \alpha\in\mathcal{K}_0 \text{ totally positive}\}/\mathcal{K}^*$

Let ℓ coprime to discriminant of $\mathbb{Z}[\pi, \bar{\pi}]$. Then the kernel of $I_{\mathfrak{a}}$ is a subgroup invariated by π .

$$O(M(r)(r\log q + \ell^{2n}))$$

Sorina Ionica 30 / 35

Non-degenerate pairing on kernel

Let J be a jacobian whose endomorphism ring is locally maximal at ℓ .

Assume $\pi-1$ is exactly divisible by ℓ^n and let G be a subgroup in \mathcal{W} .

The Tate pairing is non-degenerate on $G \times G$ if

$$T_{\ell^n}: G \times G \to \mu_{\ell^{k_{\ell,J}}}$$

is surjective. We say it is degenerate otherwise.

Sorina Ionica 31 / 35

Computing horizontal isogenies

Let G_1 be a maximal isotropic subgroup of $J[\ell]$. Consider $G \in \mathcal{W}$ such that $\ell^{n-1}G = G_1$.

Theorem

- If the isogeny of kernel G_1 is horizontal, then the Tate pairing is degenerate on $G \times G$.
- Under the conditions from Lemma *, if the Tate pairing is degenerate on $G \times G$, then the isogeny is horizontal.

$$O(M(r)(r\log q + \ell^{2n} + n\log \ell))$$

Sorina Ionica 33

An example

We consider the jacobian of the hyperelliptic curve

$$y^2 = 5x^5 + 4x^4 + 98x^2 + 7x + 2$$
, over \mathbb{F}_{127} .

 $\operatorname{End}(J)$ is maximal at 5 and $[\operatorname{End} J: \mathbb{Z}[\pi, \bar{\pi}]] = 50$.

The decomposition (5) = $a\bar{a}$ in \mathcal{O}_K gives two horizontal isogenies.

The 5-torsion is defined over $\mathbb{F}_{127}(t) := \mathbb{F}_{127^8}$.

With MAGMA, we computed the Mumford coordinates of the generators of kernels:

$$(x^2 + (74t^7 + 25t^6 + 6t^5 + 110t^4 + 96t^3 + 75t^2 + 29t + 20)x + 39t^7 + 62t^6 + 77t^5 + 47t^4 \\ + 9t^3 + 62t^2 + 97t + 15, (116t^7 + 61t^6 + 13t^5 + 38t^4 + 70t^3 + 109t^2 + 62t + 71)x + 98t^7 + 77t^6 + 17t^5 \\ + 76t^4 + 81t^3 + 5t^2 + 36t + 33), (x^2 + (66t^7 + 89t^6 + 50t^5 + 124t^4 + 91t^3 + 102t^2 + 100t + 52)x + 119t^7 \\ + 14t^6 + 126t^5 + 42t^4 + 42t^3 + 85t^2 + 12t + 77, (92t^7 + 90t^6 + 94t^5 + 57t^4 + 59t^3 + 24t^2 + 72t \\ + 11)x + 103t^7 + 16t^6 + 7t^5 + 111t^4 + 95t^3 + 79t^2 + 45t + 34)$$

Sorina Ionica 33 / 35

Kernels with non-degenerate pairing

There are $\ell^3 + \ell^2 + \ell + 1$ ℓ -isogenies. Experimentally, we observed:

ℓ	$\#\ell$ -Isogenies	#Kernels with deg. pairing
3	40	4, 7, 8
5	156	6, 8, 12
7	400	8, 14, 16
11	1464	12, 22, 24

It seems that at most $O(\ell)$ subgroups in $\mathcal W$ have degenerate Tate pairing.

Sorina Ionica 34

Future work

• In genus 1, the ℓ -adic valuation of the Frobenius fully characterizes the endomorphism ring.

```
I.-Joux, Pairing the volcano, Math. Comp.
http://arxiv.org/abs/1110.3602
```

- In genus 2, we need a stronger invariant. Work in progress with Emmanuel Thomé.
 - I., Pairing-based algorithms for jacobians of genus 2 curves with maximal endomorphism ring,

http://fr.arxiv.org/abs/1204.0222

Sorina Ionica 35 / 35