
Algorithms for discrete logarithms in finite
fields and elliptic curves

ECC “Summer” school 2015

E. Thomé
/* */ C,A,
/* */ R,a,
/* */ M,E,

L,i=
5,e,

d[5],Q[999]={0};main(N){for
(;i--;e=scanf("%" "d",d+i));for(A =*d;
++i<A ;++Q[i*i% A],R= i[Q]?
R:i); for(;i --;) for(M =A;M
--;N +=!M*Q [E%A],e+= Q[(A
+E*E- R*L* L%A) %A]) for(
E=i,L=M,a=4;a;C= i*E+R*M*L,L=(M*E +i*L)

%A,E=C%A+a --[d]);printf ("%d"
"\n",
(e+N*
N)/2

/* cc caramel.c; echo f3 f2 f1 f0 p | ./a.out */ -A);}

CARAMEL

Sep. 23rd-25th, 2015

Algorithms for discrete logarithms in finite fields and elliptic curves 1/122

Part 1

Context and old algorithms

Context, motivations

Exponential algorithms

L(1/2) algorithms

Plan

Context, motivations

Exponential algorithms

L(1/2) algorithms

Plan

Context, motivations
Definition
What is hardness?
Good and bad families – should we care only about EC?
Cost per logarithm

The discrete logarithm problem

In a cyclic group, written multiplicatively

(g , x)→ gx is easy: polynomial complexity;
(g , gx)→ x is (often) hard: discrete logarithm problem.

For an elliptic curve E , written additively:

(P, k)→ [k]P is easy;
(P,Q = [k]P)→ x is hard.

Cryptographic applications rely on the hardness of the discrete
logarithm problem (DLP).

Algorithms for discrete logarithms in finite fields and elliptic curves 3

Another view on the DLP

In case the group we are working on is not itself cyclic, DLP is
defined in a cyclic sub-group (say of order n).
Thus we know that we have an isomorphism.

Z/nZ → G,
k 7→ gk

DL is the direction ←. This map is not computationally explicit.

Algorithms for discrete logarithms in finite fields and elliptic curves 4

DH versus DL
There are several ancillary problems to the DLP, the closest ones
being the (computational) Diffie-Hellman problem:

CDH: (g , gx , gy)→ gxy

and the decisional Diffie-Hellman problem:

DDH: (g , gx , gy , h)→ h ?= gxy

Crypto protocols rely on the hardness of some specific problems.
DH key exchange relies on CDH;
El Gamal encryption relies on CDH;
For some primitives, semantic security may rely on DDH;
. . .

Caveat: many newly invented cryptographic protocols come with
their new purportedly hard problem.

Algorithms for discrete logarithms in finite fields and elliptic curves 5

DH versus DL

Trivial: can solve DLP⇒ can solve CDH⇒ can solve DDH.
The converse is “often” true [Mau94,MW96,MSV04].

All NAME-YOUR-DL-RELATED-HARDNESS-ASSUMPTION-HERE
instances can at worst be broken by solving DL.

In many cases, this is the best solution known. . . not always.

What we won’t do
We do not address here the DH-related problems, but really the
computation of DL.

Algorithms for discrete logarithms in finite fields and elliptic curves 6

Plan

Context, motivations
Definition
What is hardness?
Good and bad families – should we care only about EC?
Cost per logarithm

Hardness

Key notion

What does it mean when we say:

DLP is hard on elliptic curves.
DLP is moderately hard on finite fields.
DLP is easy on small characteristic finite fields.

Algorithms for discrete logarithms in finite fields and elliptic curves 7

Hardness

A family of groups G
Size parameter λ −→ G(λ) = a set of groups of size λ.

Here, size λ = log2 #G (roughly).
Some basic requirements:

Counting n = #G for G ∈ G(λ) must be feasible;
We want O(λ) bits for storing elements;
Arithmetic in G must be reasonably efficient, POLY(λ).

Examples: finite fields; binary finite fields; prime fields; elliptic
curves over binary fields; . . .
Hardness: we want the cost of computing DL by most efficient
means known to grow fast.

Algorithms for discrete logarithms in finite fields and elliptic curves 8

Hardness w.r.t input size

Plotting log(computational difficulty) as a function of log(#G).

 20

 40

 60

 80

 100

 120

 500 1000 1500 2000 2500 3000 3500 4000

sqrt(n)
L(1/3)
L(1/2)

quasi-poly
POLY

Slow algorithms get expensive pretty soon.

Algorithms for discrete logarithms in finite fields and elliptic curves 9

Key size w.r.t desired security / time
Feasibility limit = computational resources; grows with time
(Moore’s law).

security parameter=log(attack cost) is a measure of time.
key size to be chosen appropriately.

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120

sqrt(n)
L(1/3)
L(1/2)

quasi-poly
POLY

Algorithms for discrete logarithms in finite fields and elliptic curves 10

Plan

Context, motivations
Definition
What is hardness?
Good and bad families – should we care only about EC?
Cost per logarithm

Which groups shall we avoid ?

Here are some group families and rough DL hardness:

Easy DL: truly bad for crypto: (Z/NZ,+);
Not-so-hard DL: finite fields, curves of very large genus, class
groups of number fields;
Hard DL: elliptic curves, curves of genus 2.

And beyond that, groups whose order is a product of small primes
are a waste, because of Pohlig-Hellman reduction.

Algorithms for discrete logarithms in finite fields and elliptic curves 11

Why care about FF ?

Topic here

DLP in finite fields and elliptic curves.

Elliptic curves enjoy harder DLP than finite fields.

Why don’t we ditch finite fields altogether ?

Algorithms for discrete logarithms in finite fields and elliptic curves 12

Reach of studying FF DLP

Finite fields are not ideal for crypto. Why is it interesting at all ?

It’s a basic object. Is worth looking at mathematically
speaking.
It’s a basic object. It’s been there from the start.
It’s a basic object. Some crypto protocols prefer these.
Pairings.
Tricks with subgroups of the multiplicative group.

Algorithms for discrete logarithms in finite fields and elliptic curves 13

Pairing-based crypto

An indirect reason to look at FF-DLP
Some (± exotic) cryptographic protocols use pairings:

e : G×G→ K ∗, (K finite field)

Identity-based encryption [BF01],
Tripartite DH [Jou00],
Short signatures [BLS04],
. . .

The finite field is intrinsically there; cannot be replaced.

Known practical situations: G =an elliptic curve over Fq,
K a small extension of Fq.

Algorithms for discrete logarithms in finite fields and elliptic curves 14

Why do subgroup DLP ?
There’s a small catch with the Pohlig-Hellman reduction.

Computing the log in G (thus modulo n) might use some
special structural properties of G (e.g. stability under some
extra operations).
Computing the log in a subgroup might fail to exploit these
properties any better.

Subgroups of finite fields

Consider G = F×p , and H a subgroup, #H = q | (p − 1).

DLP algorithms for F×p lead to choose p > 22048 (so to say).
Practical attacks for DLP in H, beyond DLP in F×p , are
generic ones. The safety condition on q = #H is less
stringent (say q > 2256).

Algorithms for discrete logarithms in finite fields and elliptic curves 15

Subgroups of finite fields

Some protocol designs exploit this subgroup trick.

DSA takes a q ≈ 160-bit subgroup of F×p , with 1024-bit p.
Signature data is mod q, not mod p.
The XTR cryptosystem [LV00] uses a reduced representation
of elements within a subgroup of Fp6 .
Torus-based cryptography [RS08]: generalization of similar
principle.

What this implies for DLP challenges:

Imagine #F×p2048 = 2× p256 × p1792; DLP in the 1792-bit
subgroup is hardly relevant for crypto.
Pairing-based crypto example E × E → Fqk .
Only DLP in subgroup of order #E is interesting.

Algorithms for discrete logarithms in finite fields and elliptic curves 16

Subgroups of finite fields (summary)

Bear in mind

we are not necessarily interested in the DLP in the whole
multiplicative group per se;
we shall not be annoyed by some uninteresting prime factors
behaving oddly.
DL modulo small primes can be handled differently anyway.

Algorithms for discrete logarithms in finite fields and elliptic curves 17

Plan

Context, motivations
Definition
What is hardness?
Good and bad families – should we care only about EC?
Cost per logarithm

The per-log cost issue

Context for finite field DLP
K = Fpn a finite field; G = 〈g〉 a subgroup of K×.

We’ll see:

Basic algorithms which apply to general groups (incl EC);
Algorithms specialized for the finite field context.

We might regard the DLP in two possible ways.

Given a = gx ∈ G , compute x ; just once.
Do some precomputation, producing data so as to be able to
compute many log at smaller cost.

There’s a preference for the latter (look at LOGJAM, for instance).

Algorithms for discrete logarithms in finite fields and elliptic curves 18

The art of FF-DLP

Algorithms specialized for finite field DLP share background with:

Algorithms for factoring integers.
Much of the work which led to DLP algorithms initially came
from the factoring business.
DLP computation of high genus curves [EGT11].

Algorithms for discrete logarithms in finite fields and elliptic curves 19

Plan

Context, motivations

Exponential algorithms

L(1/2) algorithms

Plan

Exponential algorithms
Baby-step–Giant-step and ρ
Parallel collision search
Some ECDLP records

Generic algorithms (work in all cases)

First focus on DLP algorithms for generic groups. This means we
cannot use specific properties of G , just group operations. The
group acts as a black box.

Known generic solutions to DLP (here n = #G):

Enumeration: O(n);
Baby-step–Giant-step: deterministic time and space O(

√
n);

Pollard ρ: probabilistic time O(
√

n), space O(1).
Parallel collision search (λ): same context, in parallel.

These are exponential algorithms in the bit-size of G .

Algorithms for discrete logarithms in finite fields and elliptic curves 20

Shanks: Baby-step–Giant-step
One writes logg a = uC + v , 0 ≤ v < C , 0 ≤ u < n/C

Then: guC+v = a⇔ a(g−C)u = gv .

Baby steps: compute B = {gv , 0 ≤ d < C};

Giant steps: compute h = g−C ;
for u = 0..n/C , if ahu ∈ B, then stop.

End: ahu = gv for some u, v , hence logg a = uC + v .
Analysis: C + n/C group operations and n/C membership tests.
Deterministic time and space Õ(

√
n) for C =

√
n.

Implementation: membership testing with hashing;
all kinds of trade-offs possible if low memory.

Algorithms for discrete logarithms in finite fields and elliptic curves 21

Pollard’s ρ
Prop. Let f : E → E , #E = m; Xn+1 = f (Xn) with X0 ∈ E . The
functional graph of X is:

X0 X1

Xµ = Xµ+λ

Example. Let Em =Z/11Z, f : x 7→ x2 + 1 mod 11:

0 - 1 - 2 - 5 - 4 - 6
 	?6
7�

9
?

10
6

3 - 8�

Algorithms for discrete logarithms in finite fields and elliptic curves 22

Application to discrete logarithms
Say we look for k such that Q = [k]P, with P,Q ∈ E (Fq).

A way to create “random-looking” functions

For 1 ≤ k ≤ r , pick random integers γk and δk , and
precompute Mk = [γk]P + [δk]Q;
define an arbitrary function H : E → {1, . . . , r};
define f (Y) = Y + MH(Y).

Experimentally, for r ≥ 20, we get f “sufficiently random”.

By iterating Xk+1 ← f (Xk), one keeps track of:

Xk ∈ G ;
Integers uk and vk in Z/nZ such that Xk = [uk]P + [vk]Q.

Whenever Xm = Xn, we unveil k (with good probability).
Algorithms for discrete logarithms in finite fields and elliptic curves 23

Analyzing Pollard’s ρ

How long before Xm = Xn ?

Standard analysis tools (Flajolet-Odlyzko) allow to give expected
values for m and n.

E[m] = E[n] =
√
π/8 ·#E (Fq);

Variance and more also known.

In practice, look for X2t = Xt . E[t] =
√
π5/288#E (Fq);

Floyd’s algorithm:

X <- X0; Y <- X0; e <- 0;
repeat
X <- f(X); Y <- f(f(Y)); e <- e+1;
until X = Y;

Algorithms for discrete logarithms in finite fields and elliptic curves 24

Plan

Exponential algorithms
Baby-step–Giant-step and ρ
Parallel collision search
Some ECDLP records

Searching for collisions in parallel
The “big picture” of the functional graph of f looks like this:

Principle: have several workers start at different random
points in the graph.
Challenge: how to detect collisions efficiently ?

Algorithms for discrete logarithms in finite fields and elliptic curves 25

The parallel collision search method

Foklore idea, attributed to many ([QD90,vOW99]).

Node K iterates x ← f (x).
Too expensive to check every x will all points computed
elsewhere.
Only rare distinguished points are considered for checking:
e.g. if the 20 lowest bits of their hash are zero.
DPs are stored on a server.
Caveat: avoid short cycles. Node restart from a new fresh
random point quite often.

The complexity in total is still O(
√

n), and this scales up very well.

Algorithms for discrete logarithms in finite fields and elliptic curves 26

Is that all ?

We’ve seen two algorithms which work on generic groups, and
solve DL in O(

√
n).

Can we do better ?

Not for generic groups.

Nechaev-Shoup [Nec94,Sho97]
For a generic (black-box) group G with n = #G , no discrete
logarithm algorithm succeeds in time less than Ω(

√
n).

Caveat: generic groups do not exist.

Algorithms for discrete logarithms in finite fields and elliptic curves 27

Plan

Exponential algorithms
Baby-step–Giant-step and ρ
Parallel collision search
Some ECDLP records

Computational feats

Generic algorithms are the best ones known for DLP on elliptic
curves. Thus the most intensive calculations are in this context.
All used some form of parallel collision search.

∼ 2000: several certicom ECC challenge “exercises” done by
R. Harley. Sofware still online.
http://cristal.inria.fr/~harley/ecdl_top

2002, 2004: distributed effort, 109-bit both prime and binary.
2009: 112-bit prime ECDLP using Playstations (EPFL).
http://lacal.epfl.ch/112bit_prime

2014, 2015: FPGA records for ECDLP over 113-bit binary
fields (one Koblitz one non-Koblitz curves).
2009- effort to attack a 131-bit Koblitz curve (not completed,
probably stopped). http://ecc-challenge.info/

Algorithms for discrete logarithms in finite fields and elliptic curves 28

http://cristal.inria.fr/~harley/ecdl_top
http://lacal.epfl.ch/112bit_prime
http://ecc-challenge.info/

Plan

Context, motivations

Exponential algorithms

L(1/2) algorithms

Plan

L(1/2) algorithms
Smoothness, and combination of congruences
Adleman’s algorithm
Analysis of Adleman’s algorithm
Adaptation – Other L(1/2) algorithms

Combination of congruences

As it turns out, finite fields have faster DLP algorithms than
generic groups.

First algorithm of this kind: Adleman [Adl79], based on the
combination of congruences idea (cf factoring).
Analysis requires some standard analytic number theory tools.
More advanced algorithms followed.

Algorithms for discrete logarithms in finite fields and elliptic curves 29

Smoothness
We often talk about smoothness of polynomials or integers.

Definition: smoothness

A polynomial of degree at most n is k-smooth if all its
irreducible factors have degree at most k.
An integer ≤ X is B-smooth if all its prime factors are ≤ B.

Probability of smoothness is controlled essentially by the size ratio:
u = n

k , or u = logX
logB .

Simple-to-remember: the probability is roughly u−u(1+o(1)).

Canfield-Erdős-Pomerance + many variants.
Some caveats with limit cases.
Analytic number theory can give much stronger results.

Algorithms for discrete logarithms in finite fields and elliptic curves 30

About smoothness

The cost of smoothness testing depends on which kind of object
we’re talking about.

Easy for polynomials, just like factoring polynomials, has
polynomial complexity.
For integers, it is trickier, as factoring integers is hard. It’s
possible to work around this difficulty both theoretically and in
practice.

Not always a proper notion of smoothness

Smoothness = construction kit situation.

Big pieces made of small pieces.
Works fine for Z or Fp[x], much less for EC.

Algorithms for discrete logarithms in finite fields and elliptic curves 31

Plan

L(1/2) algorithms
Smoothness, and combination of congruences
Adleman’s algorithm
Analysis of Adleman’s algorithm
Adaptation – Other L(1/2) algorithms

Adleman’s algorithm
Aim at logg h in F×p . Let B ≈ 2β be a bound.

Key choice: a factor base = set of privileged elements

F = {π mod p, π prime ≤ B}.

Whenever g random mod p is smooth, we have

g r ≡ pe1
1 · · · p

eK
K mod p,

r ≡ e1(log p1) + · · ·+ eK (log pK) mod (p − 1)

with {pi} ⊂ F .
By linear algebra we solve for the unknowns (log pi).

Next, given the challenge h:
Compute random elements b = hg r until b is B-smooth.
Use the precomputed (log pi)’s to express log h.

Algorithms for discrete logarithms in finite fields and elliptic curves 32

Adleman’s algorithm

Reduce g random mod p;
Hope for B-smoothness.
Yields relation between FB elements.
(additive relation with their log’s)
Individual log: compute g randomh.

Z

Fp

smoothness

relation

Algorithms for discrete logarithms in finite fields and elliptic curves 33

The linear algebra system showing up

Characteristics of the system

Equations are r ≡ e1(log p1) + · · ·+ eK (log pK) mod (p − 1).
Unknowns are (log pi).
Matrix coefficients are ei .
Each matrix row has few coefficients, which are small integers.
The system is defined over Z/(p − 1)Z.

The algorithmic tools to solve such systems are sparse linear
algebra algorithms (which are much more developed now than they
were in 1970’s).

Will tell more about these later;
Good to know: nowadays we do have the tools to do this in
quadratic time.

Algorithms for discrete logarithms in finite fields and elliptic curves 34

Plan

L(1/2) algorithms
Smoothness, and combination of congruences
Adleman’s algorithm
Analysis of Adleman’s algorithm
Adaptation – Other L(1/2) algorithms

Size matters

Recall p ≈ 2λ and B ≈ 2β.
The set of primes below B is called the factor base.
Which size for the factor base elements ? (= which B ?)

too small (= too few)?
Will have a hard time finding relations.
Cheap linear algebra.

too large (= too many)?
Relations become cheaper.
Linear algebra becomes an obstacle.

Algorithms for discrete logarithms in finite fields and elliptic curves 35

Analysis

Recall p ≈ 2λ and B ≈ 2β.

#{primes below B} = B/ logB, not that far from B = 2β.
a = g r is an λ-bit integer.
Smoothness probability: (λ/β)−λ/β(1+o(1)).
We need 2β relations.
Linear algebra cost is polynomial in B.

Optimal choice: β ≈
√
λ.

The overall complexity is exp(O(
√
λ log λ)).

This is called a sub-exponential complexity.
MUCH better than √p = exp(λ/2)

Consequence: key size ≈ square of time (see slide 10).

Algorithms for discrete logarithms in finite fields and elliptic curves 36

Precomputation vs individual logarithms

Note: as presented, Adleman’s algorithm has:

a precomputation stage: logs of FB elememts.
an individual log stage: given a, find logg a.

One can show that the latter is cheaper.
Nice DL algorithms nowadays keep this small per-logarithm cost.

Algorithms for discrete logarithms in finite fields and elliptic curves 37

The L function

Handy function (R. Schroeppel and/or C. Pomerance):

Lx [α, c] = exp
(
c(log x)α(log log x)1−α

)
.

Lx [0, c] = polynomial in log x .
Lx [1, c] = exponential in log x .
L is often called the sub-exponential function.

Usual shorthand in these slides: Lx [α] denotes Lx [α, c] for some
explicitly computable constant c.

Algorithms for discrete logarithms in finite fields and elliptic curves 38

L function arithmetic

Computation rules with Lx(α, c)

Lx [a, u]× Lx [b, v] =

Lx [a, u + o(1)] if a > b,
Lx [b, v + o(1)] if b > a,
Lx [a, u + v] if a = b.

Lx [a, u > 0] + Lx [b, v > 0] =

Lx [a, u + o(1)] if a > b,
Lx [b, v + o(1)] if b > a,
O(Lx [a,max(u, v)]) if a = b.

LLx [b,v][a, u] = Lx [ab, uvab1−a + o(1)].

Lx [b, v]loglog x Lx [a,u] = Lx [a + b, uv].

Algorithms for discrete logarithms in finite fields and elliptic curves 39

Restating CEP

Reformulation of Canfield-Erdős-Pomerance
An integer ≤ Lx (α, u) is Lx (β, v)-smooth with probability:

Lx (α− β,−u
v (α− β))1+o(1).

For example, a random integer modulo N has a probability
LN(1/2, ·) of being LN(1/2, ·)-smooth.

Algorithms for discrete logarithms in finite fields and elliptic curves 40

Smoothness for integers

Interlude: the ECM factoring method unveils a factor p of N in
time Lp[1/2]. (Idea: set B1 = Lp[1/2, c]. Hope for #(E mod p),
which is Lp[1, 1], to be B1-smooth.)
Consequence: testing a number x ≈ N for smoothness with
respect to a bound B = LN [γ, c] costs:

LLN [γ,c][1/2] = LN [γ/2].

This may be seen as mostly of theoretical interest, but does save
the day when analyzing difficult steps of advanced algorithms.

Algorithms for discrete logarithms in finite fields and elliptic curves 41

Analyzing Adleman again

Integers mod p have magnitude Lp(1, 1).
Write the smoothness bound B as Lp[γ, c] for some γ, c.

Linear system cost: Lp[γ, 2c];
Smoothness probability: Lp[1− γ, 1/c(1− γ)].
Relations needed: Lp[γ, c].
Overall cost: Lp[max(γ, 1− γ)].

This readily gives the optimal γ = 1/2 (and the lower order term
comes, too).
All the subexponential algorithms nowadays are analyzed with this
machinery.

Algorithms for discrete logarithms in finite fields and elliptic curves 42

Plan

L(1/2) algorithms
Smoothness, and combination of congruences
Adleman’s algorithm
Analysis of Adleman’s algorithm
Adaptation – Other L(1/2) algorithms

Adaptation to binary fields

Obvious fact: what we have just seen for Fp is also valid for

F2n =F2[x]/P(x)

where smoothness of integers is replaced by smoothness of
polynomials, and bit size of integers by degree.
DL in small characteristic finite fields:

1982-1983, practical improvements to Adleman’s algorithm.
DL in F2127 within reach.
1983, 1984: Coppersmith’s algorithm.
1994, 2000: Function Field Sieve.
2013: QPA.

Algorithms for discrete logarithms in finite fields and elliptic curves 43

DLP on large genus curves
On curves, it is difficult to come up with a notion of smoothness
which means something.

Slight exception: curves of large genus [ADH94]

Archetypal situation: p fixed, Cg hyperelliptic curve of genus g ,
study DLP in Jg = JacCg (Fp) (which has #Jg ≈ pg).

elements of Jg are represented by divisors of weight r ≤ g ;

D = (P1) + · · ·+ (Pr)− r(∞).

divisors of effective weight r ≤ √g taken as factor base;
smoothness test = factor u(t) in Mumford representation.
Probability in L(1/2). Complete DLP algorithm in L(1/2).

Algorithms for discrete logarithms in finite fields and elliptic curves 44

Other index calculus attempts (NOT L(1/2))
When some algebraic structure exists, can we use it to define a
factor base ?

Example: E (F2n), could imagine
F = {P with “small” x , e.g. only lower

√
n coord. non-zero}.

Use Semaev summation polynomial to express the equation:

Q = P1 + P2 + · · ·+ Pn

for arbitrary Q, and Pi ∈ F .
Finding relations becomes polynomial system solving.
As before, linear algebra to get logarithms of F .
Some controversy regarding complexity (see Kosters talk).

For some well-chosen cases of E (Fpn), can reach L(2/3) or L(3/4)
complexity (Diem).

Algorithms for discrete logarithms in finite fields and elliptic curves 45

Part 2

L(1/3) algorithms

History and setting

General setup – easy example with FFS

NFS-DL

DLP in Fpn

L(1/3) for large genus, small degree curves

Plan

History and setting

General setup – easy example with FFS

NFS-DL

DLP in Fpn

L(1/3) for large genus, small degree curves

A bit of history

Enter the realm of NFS-like algorithms.

1970’s: not many of the advanced factoring methods actually
had a complexity analysis.
The first L(1/2) formula appeared late.
1980: Adleman’s method for computing discrete logarithms
was only moderately efficient, and did not seem so much of a
threat.
Adapting DLP-based cryptosystems to using F2n seemed a
reasonable thing to do because of implementation ease.

Algorithms for discrete logarithms in finite fields and elliptic curves 47

A bit of history
1984: Coppersmith algorithm [Cop84]:
The point of this paper is that this adaptation was ill-advised.
Special algorithm for DLP in F×2n . Complexity L2n [1/3, c].
1989: first works towards the Number Field Sieve for factoring
integers. 1993: Lenstra-Lenstra book [LL93].
1993: Gordon’s algorithm for NFS-DL. Very awkward for
individual logarithms. Several further works.

Coppersmith’s algorithm really is a historical mark

It didn’t seem at all clear at the time that Coppersmith’s
method was going to generalize to broader contexts.
While Coppersmith’s method came with an inventive descent
algorithm, crafting this step for cousin DL algorithms took
years.

Algorithms for discrete logarithms in finite fields and elliptic curves 48

A bit of history
1984: Coppersmith algorithm [Cop84]:
The point of this paper is that this adaptation was ill-advised.
Special algorithm for DLP in F×2n . Complexity L2n [1/3, c].
1989: first works towards the Number Field Sieve for factoring
integers. 1993: Lenstra-Lenstra book [LL93].
1993: Gordon’s algorithm for NFS-DL. Very awkward for
individual logarithms. Several further works.

Coppersmith’s algorithm really is a historical mark

It didn’t seem at all clear at the time that Coppersmith’s
method was going to generalize to broader contexts.
While Coppersmith’s method came with an inventive descent
algorithm, crafting this step for cousin DL algorithms took
years.

Algorithms for discrete logarithms in finite fields and elliptic curves 48

What hinders Adleman’s algorithm

The following misfeatures have been improved in further works:

Elements created as g r mod p are as large as p.
All we can say is a ∈ Lp[1].
For computing individual logarithms (e.g. when we consider
the target h), we have no way to take advantage of the fact
that h might perhaps have not-so-large bit size.

If we could do the latter, we might imagine a recursive procedure:

Large h → product of smaller elements → yet smaller → {pi}.

Such a recursive procedure exists in the modern context and is
called a descent.

Algorithms for discrete logarithms in finite fields and elliptic curves 49

Plan

History and setting

General setup – easy example with FFS

NFS-DL

DLP in Fpn

L(1/3) for large genus, small degree curves

Adleman’s algorithm = starting point

Reduce g random mod p;
Hope for β-smoothness.
Yields relation between FB elements.
(additive relation with their log’s)
Individual log: compute g randomh.

Z

Fp

smoothness

relation

Common subexponential framework

Collect relations between “objects”;
Define meaningful “logarithms” for these objects;
Solve a large linear system;
Express individual logarithms as combinations of known ones.

Algorithms for discrete logarithms in finite fields and elliptic curves 50

Diagram from NFS factoring
This commutative diagram is from the Number Field Sieve (1993)
as a factoring algorithm.

Z[x]

Z[m] Z[α]

Z/NZ

x 7→ m x 7→ α

ϕg : t 7→ t mod N ϕf : α 7→ m mod N

smoothness here smoothness here

relations here

This is still relevant, but before going into detail, we’ll look at a
specialized example.

Algorithms for discrete logarithms in finite fields and elliptic curves 51

The Function Field Sieve
FFS (1994) inherits from the Number Field Sieve algorithm.

FFS Setting (for Fqn , q small)

Consider two plane curves defined over Fq:

C1 : C1(x , y) = 0; C2 : C2(x , y) = 0

such that C1 ∩ C2 has a point (µ, ν) defining Fqn ;
i.e. Res(C1,C2) has an irreducible factor of degree n.

φ ∈ Fq[x , y]

function on C1 function on C2

evaluation on (µ, ν): Fqn

Algorithms for discrete logarithms in finite fields and elliptic curves 52

FFS Setting for Fqn, q small

Fq[x , y]

function on C1 function on C2

evaluation on (µ, ν): Fqn

want smoothness here want smoothness here

want relations here

We want smoothness on both sides;
This occurs in the degree 0 divisor class group of both curves;
Down to earth: boils down to some polynomial factoring nicely.

We get relations from the fact that the diagram commutes.

How much complication this means depends on the curves chosen.
Algorithms for discrete logarithms in finite fields and elliptic curves 53

Example: the easy FFS
The FFS scenario is quite flexible, so illustrate with an easy case.

Our target is Fqn (bottom of the diagram);
Any degree n irreducible dividing Res(C1,C2) will do !

Easy choice of curves
C1(x , y) = y − f (x); C2(x , y) = x − g(y)

with f , g such that g(f (x))− x has a degree n irreducible factor.

Let D(x) be this degree n irreducible factor.
Let µ be a root of D in Fqn , and ν = f (µ):

(µ, ν) is clearly on C1 since ν = f (µ).
it is also on C2 since g(ν) = µ.

Good news Curves C1 and C2 have genus 0.
The function field is Fq(t) in both cases.

Algorithms for discrete logarithms in finite fields and elliptic curves 54

The “simple FFS” diagram

We may rewrite the diagram:

Fq[x , y]

Fq[x , y]/(y − f (x)) Fq[x , y]/(x − g(y))

Fqn

Resy (φ(x , y), y − f) Resx (φ(x , y), x − g)

x 7→ µ y 7→ ν

Algorithms for discrete logarithms in finite fields and elliptic curves 55

Two sides

We look for favorable φ(x , y) such that:

On the x (left) side, φ(x , f (x)) is smooth;
On the y (right) side, φ(g(y), y) is smooth.

We want BOTH to happen at the same time. Few a, b will work.

Factor bases
Implicitly, we are considering two distinct factor bases:

Irreducible polynomials in x of small degree (≤ β);
Irreducible polynomials in y of small degree (≤ β).

These are distinct because the maps x 7→ µ and y 7→ ν have
distinct images.

Algorithms for discrete logarithms in finite fields and elliptic curves 56

Example: the easy FFS

Pick a function φ ∈ Fq[x , y].

φ(x , f (x)) is a function on C1.
Could be smooth: φ(x , f (x)) = p1(x) · · · pr (x).
φ(g(y), y) is a function on C2.
Could be smooth: φ(g(y), y) = q1(y) · · · qs(y).

Doubly smooth φ yield multiplicative relations in F×qn :

p1(µ) · · · pr (µ) = q1(ν) · · · qs(ν).

Work plan:

Collect many such relations.
Build linear system with unknowns {logg p(µ)} ∪ {logg q(ν)},
with p and q have degree ≤ some β.

Algorithms for discrete logarithms in finite fields and elliptic curves 57

A quick analysis of FFS

A balanced case for the analysis of FFS:

Define C1 and C2 with deg f = deg g =
√

n;
Pick functions φ with degx φ = degy φ = 6

√
n

⇒ degx φ(x , f (x)) = degy φ(g(y), y) ≈ n2/3.
Define a smoothness degree β = 3

√
n.

Probability of smoothness in Lqn (1/3).
Complexity of the whole algorithm is in L(1/3).

Many variants exist. Computation of individual algorithms with a
descent procedure.

Algorithms for discrete logarithms in finite fields and elliptic curves 58

Analysis

Collecting all the degree info we have suggested:

Factor bases = irreducibles of degree ≤ n1/3; L[1/3]
We have chosen degx ,y φ = n1/6; L[1/3]
Resultants on both sides have degree n2/3; L[2/3]
Smoothness probability is thus Lqn [1/3]. L[1/3]
Collecting Lqn [1/3] relations takes Lqn [1/3] L[1/3]
(just exhausting the search space).
Linear algebra takes Lqn [1/3]. L[1/3]

The magic here comes from the way we create relations.
This yields a drop from L(1/2) to L(1/3).

Algorithms for discrete logarithms in finite fields and elliptic curves 59

Plan

History and setting

General setup – easy example with FFS

NFS-DL

DLP in Fpn

L(1/3) for large genus, small degree curves

Plan

NFS-DL
NFS-DL setting and headaches
Rough analysis

The “simple FFS” diagram

Recall the diagram we had.

Fq[x , y]

Fq[x , y]/(y − f (x)) Fq[x , y]/(x − g(y))

Fqn

Resy (φ(x , y), y − f) Resx (φ(x , y), x − g)

x 7→ µ y 7→ ν

Algorithms for discrete logarithms in finite fields and elliptic curves 60

What to reuse from our simple FFS example

Our toy FFS example has some peculiarities:

These two roles of x and y are really situation specific;
The existence of two sides, however, is common with other
cases;
The diagram will remain;
The general algorithm framework will remain;
Unfortunately objects become more complicated than mere
polynomials.

Of course, for attacking DL in Fp, we will talk more about integers
than polynomials.

Algorithms for discrete logarithms in finite fields and elliptic curves 61

Strategy

Goal: create relations mod p as images by ring morphisms from
two different structures, linked by a commutative diagram.

NFS-DL: these ring morphisms come from number fields
usually, we take one of these number fields to be Q.

This is exactly the same framework as for NFS (for factoring).

Algorithms for discrete logarithms in finite fields and elliptic curves 62

The NFS-DL setup

We have:

a number field K = Q(α) defined by f (α) = 0,
for f irreducible over Q and deg f = d ;
another irreducible polynomial g such that f and g have a
common root m mod p (example: g = x −m).

g defines the rational side, f defines the algebraic side.

Restating with the resultant

The following restatement can be useful.

f and g share a root modulo p ⇔ Resx (f , g) = 0 mod p.

Choosing f and g is referred to as the polynomial selection step.

Algorithms for discrete logarithms in finite fields and elliptic curves 63

Relations in NFS

Z[x]

Z[m] Z[α]

Z/pZ

ψ(1) : x 7→ m ψ(2) : x 7→ α

ϕg : t 7→ t mod p ϕf : α 7→ m mod p

a − bx

a − bm a − bα

same element

Take for example a − bx ∈ Z[x]. Suppose for a moment that:
the integer a − bm is smooth: product of factor base primes;
the algebraic integer a − bα is also a product.
factors on both sides belong to a small set (factor base).

NFS collects many such “good pairs” (a, b).

Algorithms for discrete logarithms in finite fields and elliptic curves 64

Relations in NFS

Z[x]

Z[m] Z[α]

Z/pZ

ψ(1) : x 7→ m ψ(2) : x 7→ α

ϕg : t 7→ t mod p ϕf : α 7→ m mod p

a − bx

a − bm a − bα

same element

Take for example a − bx ∈ Z[x]. Suppose for a moment that:
the integer a − bm is smooth: product of factor base primes;
the algebraic integer a − bα is also a product.
factors on both sides belong to a small set (factor base).

NFS collects many such “good pairs” (a, b).
Algorithms for discrete logarithms in finite fields and elliptic curves 64

Collecting relations

Suppose factor bases are: {p1, . . . , p99} (rational),
{π1, . . . , π99} (algebraic).

Good pairs could lead to:

a1 − b1m = p2 × p3
4 × p12 × p22,

a2 − b2m = p1 × p3 × p2
5 × p47,

a3 − b3m = p6
1 × p4 × p7 × p22,

and at the same time:

a1 − b1α = π1 × π23 × π26 × π35,
a2 − b2α = π2 × π28 × π29,
a3 − b3α = π42 × π3 × π23,

This would turn into relations in Fp:

φf (p1)6×φf (p4)×φf (p7)×φf (p22) = φg (π2)4×φg (π3)×φg (π23).

Caveat
This is too rosy. Z[α] not a UFD. Complications ahead.

Algorithms for discrete logarithms in finite fields and elliptic curves 65

Several obstructions

There are many tiny technicalities to work with:

We would like to know the ring of integers, but we cannot
compute it for certain;
We need to factor into ideals. Most often, it’s easy.
Some “bad ideals” need to be dealt with.
For factoring, we can cheat on them, not for DL.
Because of number field units, we must add `-adic characters
called Schirokauer maps.
We need to define virtual logarithms properly.

None is a real deterrent to making NFS-DL a completely practical
algorithm.

Algorithms for discrete logarithms in finite fields and elliptic curves 66

NFS summary

Outline of the algorithm:

Do the setup. Choose a factor base bound B ;

Relation search
Pick pairs a, b for coprime integers a and b ;

Expect a − bm to be a smooth integer ;

Expect also the ideal (a − bα) to be smooth ;

Compute Schirokauer maps. Do linear algebra to compute
virtual logarithms of factor base elements.
Compute individual logarithms.

Algorithms for discrete logarithms in finite fields and elliptic curves 67

Finding smooth a, b

Finding a, b such that a − bm is smooth: easily stated.

Finding a, b such that (a − bα)OK is a smooth ideal:

When I = pe1
1 · · · p

ek
k , we have Norm I =

∏
i (Norm pi)ei .

Look at
Norm((a−bα)OK) = NormK/Q(a−bα) = bdeg f f (a/b) (∈ Z).
If this norm is smooth, then (a − bα)OK is a smooth ideal.

Each pair a, b meeting these conditions yields a relation.
For each relation, we focus on valuations at primes / prime ideals.

Algorithms for discrete logarithms in finite fields and elliptic curves 68

Plan

NFS-DL
NFS-DL setting and headaches
Rough analysis

Analysis of NFS

We consider a, b bounded by Lp[1/3], and B = Lp[1/3].
Polynomials f and g can be chosen in various ways. Usual setup:

|fi | ≈ Lp[2/3] and deg f ≈
(

log p
log log p

)1/3
= loglog p Lp[1/3].

|gi | ≈ Lp[2/3] and deg g = 1.

We neglect the time for testing smoothness (see later).
Approximate sizes:

a − bm ≈ Lp[2/3];
Norm(a − bα) = bdeg f f (a/b) ≈ Lp[2/3].

Smoothness probability is thus Lp[1/3].
 relation collection, linear algebra both in Lp[1/3].

Algorithms for discrete logarithms in finite fields and elliptic curves 69

With the constants
More precise complexity for NFS-DL in Fp:

for arbitrary p: Lp[1/3, (64/9)1/3] (same as GNFS);
for exceptionally easy p: Lp[1/3, (32/9)1/3] (same as SNFS).
Example of an easy p: 21120 + 2161 − 1.

Note that this complexity difference lies in the exponent.
This makes a huge difference in practice.

A fact which should be better known
Some exceptionally easy p conspicuous.
But disguising an easy p as an honest random-looking p is easy:

pick f and g to our liking;
publish p = Res(f , g).

Bottom line: never ever let a 3rd party (say, NSA) choose your p.

Algorithms for discrete logarithms in finite fields and elliptic curves 70

With the constants
More precise complexity for NFS-DL in Fp:

for arbitrary p: Lp[1/3, (64/9)1/3] (same as GNFS);
for exceptionally easy p: Lp[1/3, (32/9)1/3] (same as SNFS).
Example of an easy p: 21120 + 2161 − 1.

Note that this complexity difference lies in the exponent.
This makes a huge difference in practice.

A fact which should be better known
Some exceptionally easy p conspicuous.
But disguising an easy p as an honest random-looking p is easy:

pick f and g to our liking;
publish p = Res(f , g).

Bottom line: never ever let a 3rd party (say, NSA) choose your p.
Algorithms for discrete logarithms in finite fields and elliptic curves 70

Plan

History and setting

General setup – easy example with FFS

NFS-DL

DLP in Fpn

L(1/3) for large genus, small degree curves

Finite fields Fpn w.r.t. p and n

log log p

log n

F2n

Fp Fields with similar bitsize
as we have log(n log p) ≈ constant

"Medium case"

Algorithms for discrete logarithms in finite fields and elliptic curves 71

Algorithms for DLP in Fpn

“Modern” algorithms have improved the complexity somewhat.
The complexity depends much on how n compares to log p.

DLP in F×pn for log p small compared to n: [Cop84], and the
Function Field Sieve (FFS) [Adl94,AH99,JL02]:

Lq(1/3, 1.53).

DLP in F×pn for n small compared to log p: The Number Field
Sieve for DLP (several successive variants [Gor93,Sch99]):

Lq(1/3, 1.93).

DLP in F×pn for fields inbetween: NFS-HD [JLSV06] + some
recent improvements in 2014 (Joux, Pierrot):

Lq(1/3, c) (for some c).

Algorithms for discrete logarithms in finite fields and elliptic curves 72

Situation in 2006

log log p

log n

F2n

Fp

p = Lpn [1/3]

p = Lpn [2/3]
nfs-hd

nfs

ffs

Algorithms for discrete logarithms in finite fields and elliptic curves 73

Situation in 2006

log log p

log n

F2n

Fp

approx. n = (log p)2

approx. n = (log p)1/2
nfs-hd

nfs

ffs

Algorithms for discrete logarithms in finite fields and elliptic curves 73

Number field sieve for extensions

Until 2006, only L[1/2] algorithms were known to compute DL in
Fpn with L[1/3] ≤ p ≤ L[2/3].
Wanted: polynomials with a common root in Fpn .
Hint: in this setting, neither p nor n are extremely big: p ≤ L[1/3].
Farily simple idea:

Take f (x) of degree n, irreducible modulo p, with small
integer coefficients.
Take g(x) = f (x) + p.

All required conditions are met. This gives an L[1/3] algorithm.

Algorithms for discrete logarithms in finite fields and elliptic curves 74

More to come

More recent work brings improvements:

look forward to talk by C. Pierrot;
look forward to talk by A. Guillevic.

Algorithms for discrete logarithms in finite fields and elliptic curves 75

Plan

History and setting

General setup – easy example with FFS

NFS-DL

DLP in Fpn

L(1/3) for large genus, small degree curves

L(1/3) on large genus curves

Pick a group family similar to the one vulnerable to [ADH94].

Fixed base field;
Growing genus.

Additional requirement: we want the curve Cg of genus g with a
defining polynomial F (x , y) of roughly balanced degree:

g1/3 ≤ degx F ≤ g2/3,

g1/3 ≤ degy F ≤ g2/3,

We might for example imagine a family of Ca,b curves, although
the Ca,b condition is not really a requirement.
Question: do we have an edge on solving the DLP on JacCg (Fq)?

Algorithms for discrete logarithms in finite fields and elliptic curves 76

L(1/3) on large genus curves

Among prime divisors on JacCg (Fq), define factor base F as:

〈u(x),P(x , y)〉;
u(x) irreducible, of small degree ≥ g1/3;
Plus finitely many divisors (singularities, places at ∞).

Splitting of functions on the factor base

Let φ(x , y) ∈ Fq[x , y] be an arbitrary function.

if degx Resy (φ,F) is g1/3-smooth, then div φ can be written
as a sum of divisors in F .
The probability of smoothness is same as in
Canfield-Erdős-Pomerance ([Heß04]).
For degx Resy = logq Lqg [a, α], Prob = Lqg [a − 1/3, ·].

Algorithms for discrete logarithms in finite fields and elliptic curves 77

DLP algorithm from smooth functions

The factor base we have defined has size Lqg [1/3, ·].
How can we choose φ so that degx Resy (φ,F) ≤ g2/3 ?

Simply write down how the degrees in φ and F interact:
degx Resy (φ,F) = degx φ degy F + degy φ degx F .
Provided degx F and degy F stay within [g1/3, g2/3], we can
achieve that.

e.g. (1/2, 1/2) degx φ = degy φ = g1/6.

e.g. (3/8, 5/8) degx φ = g1/24, degy φ = g7/24.

Bottom line
We get an L(1/3) algorithms for virtual logs of elements of F .
The individual logs step is tricky, but works too.

Algorithms for discrete logarithms in finite fields and elliptic curves 78

Part 3

Computationally hard tasks in NFS

Sieving

Linear algebra

NFS-DL/FFS Guinness book

Plan

Sieving

Linear algebra

NFS-DL/FFS Guinness book

Plan

Sieving
Sieving basics
Lattice sieving

Sieving

A possible way to check (a − bα) for smoothness:
Consider all (a, b) in the search area, one after another.

Either factor Norm(a − bα), and see if it is smooth;
Or iterate though all relevant prime ideals p instead, and see if
they divide. Succeed if the total contribution matches the
norm.

Much better: sieving

Decide beforehand of a sieving space: (a, b) within some area.
“for each a, b, for each p, do” becomes “for each p, for each
a, b, do”.

Algorithms for discrete logarithms in finite fields and elliptic curves 80

Sieving, visually

rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs

Algorithms for discrete logarithms in finite fields and elliptic curves 81

Sieving, visually

rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

Algorithms for discrete logarithms in finite fields and elliptic curves 81

Sieving, visually

rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b b

Algorithms for discrete logarithms in finite fields and elliptic curves 81

Sieving, visually

rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b

b b b b b b

b b b b b b

b b b b b

b b b b b b

b b b

b b b b

b b b b

b b b

b b b b

b b b b

b b b

b b b b

Algorithms for discrete logarithms in finite fields and elliptic curves 81

Sieving challenges

How can we parallelize sieving ?

Imagine an immense sieve area S (e.g. total size 250 or more).
We may split S in many zones of manageable size.
Problem: the yield varies much. Need serious sampling across
S to assess the expected total yield reasonably.
Diminishing returns.

Nontrivial computations in sieving:

For each “line” (fixed b) in S, the computation of the first a
to sieve in the line costs a reduction modp.

Lattice sieving to the rescue.
Old idea (1993), but superiority demonstrated only after 2000.

Algorithms for discrete logarithms in finite fields and elliptic curves 82

Plan

Sieving
Sieving basics
Lattice sieving

Lattice sieving

Lattice sieving [Pol93] improves the special-q idea [DH84].
Consider q just above the factor base.
Only a few (1q) points (a, b) ∈ S satisfy q | (a − bα).

Sieve only these points.
A lattice structure: (a, b) = i(a0, b0) + j(a1, b1).

Algorithms for discrete logarithms in finite fields and elliptic curves 83

The set of (a, b) points to sieve

There’s potential for being stupid in describing the good (a, b)’s.

It is much better to use a reduced basis.
Enumeration within [−Sa, Sa]× [1,Sb] is cumbersome.
Consider a fixed (i , j) plane instead.

Algorithms for discrete logarithms in finite fields and elliptic curves 84

The set of (a, b) points to sieve

There’s potential for being stupid in describing the good (a, b)’s.

It is much better to use a reduced basis.
Enumeration within [−Sa, Sa]× [1,Sb] is cumbersome.
Consider a fixed (i , j) plane instead.

Algorithms for discrete logarithms in finite fields and elliptic curves 84

The set of (a, b) points to sieve

There’s potential for being stupid in describing the good (a, b)’s.

It is much better to use a reduced basis.
Enumeration within [−Sa, Sa]× [1,Sb] is cumbersome.

Consider a fixed (i , j) plane instead.

Algorithms for discrete logarithms in finite fields and elliptic curves 84

The set of (a, b) points to sieve

There’s potential for being stupid in describing the good (a, b)’s.

It is much better to use a reduced basis.
Enumeration within [−Sa, Sa]× [1,Sb] is cumbersome.
Consider a fixed (i , j) plane instead.

Algorithms for discrete logarithms in finite fields and elliptic curves 84

Lattice sieving benefits

Forced factor in the norm improves the smoothness probability.
Reduced lattice basis limits the expense of this constraint on
the size of (a, b).
Sieved areas are smaller, and each is typically manageable on
a single node.
Special-q provide an easy division of tasks, with (almost)
stable yield.

More implementation tricks:

Franke-Kleinjung “sieving by vectors” [FK05].
Bucket sieving.

Algorithms for discrete logarithms in finite fields and elliptic curves 85

Plan

Sieving

Linear algebra

NFS-DL/FFS Guinness book

Sparse linear algebra

Let M be an N × N matrix over a finite field K . We want to find:

w ∈ KN s.t. Mw = 0.

Factoring or DL: M is sparse: O(log2 N) non-zeroes per row.
Factoring: K = F2 ; DL over Fp: K = F` with ` | (p − 1).
Space complexity for storing M: O(N log2 N).

Linear system solving:

Gauss: time O(N3), space O(N2).
Recursive, using matrix multiply: time O(Nω), space O(N2).
None of the options above exploit sparsity.

Algorithms for discrete logarithms in finite fields and elliptic curves 86

Sparse linear algebra
For matrices arising from crypto contexts, fill-in cannot be
tolerated.

Some figures from RSA-768

192 796 550 rows/columns ;
27 797 115 920 non-zero coefficients.
105 gigabytes as a sparse matrix.
>4000 terabytes as a dense bit matrix.

The matrix cannot be modified in the course of the computation.
We may only use black-box algorithms. No access to M itself.

v M M × v

Algorithms for discrete logarithms in finite fields and elliptic curves 87

Comparison with numerical world
Exact linear algebra differs much from linear algebra over C.

No notion of approximate solution.
No notion of convergence.

The matrices are not the same either:

(some PDE example) (a factoring matrix)
Algorithms for discrete logarithms in finite fields and elliptic curves 88

Linear algebra algortihms

Algorithms used for exact black-box linear algebra.

Wiedemann algorithm;
Lanczos algorithm;
Block Wiedemann algorithm;
Block Lanczos algorithm;

Which one is preferred depends on the context.

Lanczos needs fewer matrix operations;
Wiedemann offers more distribution opportunities.

Algorithms for discrete logarithms in finite fields and elliptic curves 89

Plan

Sieving

Linear algebra

NFS-DL/FFS Guinness book

Records in Fp

Early NFS-DL works: Weber [Web95];
Long stream of achievement by Joux and Lercier,
following [JL03]: 110dd [JL01a], 120dd [JL01b],
130dd [JL05a].
More "do like factoring" approach: Kleinjung: 160dd [Kle07].
Bouvier, Gaudry, Imbert, Jeljeli, T.: 180dd, 2014.

Algorithms for discrete logarithms in finite fields and elliptic curves 90

Records over binary fields
Records usually announced on the NMBRTHRY mailing list.

Old records with Coppersmith’s method, which is a special
version of the Function Field Sieve: T.: 607 bits [Tho02].
FFS records by Joux and Lercier (considerably more efficient
than Coppersmith’s algorithm in this range): 521 bits [JL01c],
613 bits [JL05b].
Fall 2012: 619 bits [BBD+12] (roughly a day of work).

About 160 core-hours of sieving.
Linear algebra (18hrs) using graphics cards.

Spring 2013: 809 bits [BBD+14].
And then came the quasi-polynomial variants (forthcoming
part):

Record for F2p : 1279 bits [?Kleinjung14].
Record for F2n : 9234 bits (9234 = 2 · 35 · 19) [GKZ14].

Algorithms for discrete logarithms in finite fields and elliptic curves 91

Records in the medium range

The medium case has also been covered by Joux and Lercier.

F6553725 (∼ 120dd) [JL05c].
F37080130 (∼ 168dd) [JL05d].
There, some tricks related to Galois action can be used.

Algorithms for discrete logarithms in finite fields and elliptic curves 92

Available software

Many people don’t release their code.
Everything done in Nancy is with the CADO-NFS software.

Originally a factoring software;
Use for DL is more difficult, but there’s some documentation.
CADO-NFS has been used in the recent FREAK and
LOGJAM attacks.

http://cado-nfs.gforge.inria.fr/

Algorithms for discrete logarithms in finite fields and elliptic curves 93

http://cado-nfs.gforge.inria.fr/

Part 4

Quasi-polynomial DLP in small
characteristic

Instances of the FFS setting

New construction

Descent techniques

Complexity

Plan

Instances of the FFS setting

New construction

Descent techniques

Complexity

The Function Field Sieve
FFS: two plane curves defined over Fq:

C1 : C1(x , y) = 0; C2 : C2(x , y) = 0

such that C1 ∩ C2 has a point (µ, ν) defining Fqn ;
i.e. Res(C1,C2) has an irreducible factor of degree n.

φ ∈ Fq[x , y]

function on C1 function on C2

evaluation on (µ, ν)

want smoothness here want smoothness here

want relations here

Algorithms for discrete logarithms in finite fields and elliptic curves 95

Examples already seen

The “easy FFS” scenario:

C1(x , y) = y − f (x); C2(x , y) = x − g(y)
with f , g such that g(f (x))− x has a degree n irreducible
factor.
Both have genus 0, function field is Fq(t).

The “usual FFS” is more similar to NFS:

C1(x , y) = y − f (x); “rational side”;
C2(x , y) with degree d in y . “algebraic side”
The curve C2 has (very) large genus here, but that is not
something to worry much about. Most happens in Fq(t)
anyway.

Algorithms for discrete logarithms in finite fields and elliptic curves 96

Back to the general setting

Fq[x , y]

function on C1 function on C2

evaluation on (µ, ν)

We have several constructions which fit in this picture;
For fun, we can even imagine a few more (rarely practical);
Algebraic technicalities are no obstacle;
Implementation made efficient with sieving, taking e.g.
functions φ(x , y) = a(x)− yb(x).

Algorithms for discrete logarithms in finite fields and elliptic curves 97

Complexity

All FFS-like constructions presented have complexity L(1/3).

Key: degree of norms on both side which we test for
smoothness.
All constructions have norms of degree ≈ n2/3.
Factor bases bounds are chosen as β ≈ n1/3.

Smaller β: smoothness too rare;
Larger β: unwieldy linear system.

Algorithms for discrete logarithms in finite fields and elliptic curves 98

Plan

Instances of the FFS setting

New construction

Descent techniques

Complexity

New construction

Guiding idea:

choose C2 with built-in smooth decompositions for small
degree functions φ.
use the FFS setting flexibility to make this work for Fqn .

How do we choose C2 ?

Pick C2 = yq − x and φ = y − x . (original variant: y − xq)

As a function on C2, we have φ ≡ yq − y =
∏
α∈Fq (y − α).

Nice, but this makes only one relation.
Can we expand it into more relations ?

Write similar relations;
Write down set of φ which lead to them.

Algorithms for discrete logarithms in finite fields and elliptic curves 99

New construction

Guiding idea:

choose C2 with built-in smooth decompositions for small
degree functions φ.
use the FFS setting flexibility to make this work for Fqn .

How do we choose C2 ?

Pick C2 = yq − x and φ = y − x . (original variant: y − xq)

As a function on C2, we have φ ≡ yq − y =
∏
α∈Fq (y − α).

Nice, but this makes only one relation.
Can we expand it into more relations ?

Write similar relations;
Write down set of φ which lead to them.

Algorithms for discrete logarithms in finite fields and elliptic curves 99

Relations which look alike

Joux considered replacing y by ay+b
cy+d .(ay + b

cy + d

)q
− ay + b

cy + d =
∏(ay + b

cy + d − α
)
.

If a, b, c, d ∈ Fq this brings nothing interesting.
We may however base extend to Fqk for some k > 1.

φa,b,c,d = (aqx + bq)(cy + d)− (ay + b)(cqx + dq)

All functions created this way will be smooth on C2 by construction.
They have small degree in x and y . Promising.

Algorithms for discrete logarithms in finite fields and elliptic curves 100

How many functions ?

φa,b,c,d = (aqx + bq)(cy + d)− (ay + b)(cqx + dq)

We have as many functions φ as we find ways div φ may split.

y − x has q zeroes: (α : α : 1) and a pole: (1 : 0 : 0) = (∞).
div(y − x) + (q + 1)(∞) is effective of weight (q + 1).
Same for div φa,b,c,d + (q + 1)(∞).
Its support is the image set of P1(Fq) within P1(Fqk) under
the homography y 7→ ay+b

cy+d .

We have #PGL2(Fqk) homographies; q3k − qk

Cosets modulo PGL2(Fq) yield identical image sets. ÷ q3 − q.
For k = 2, this gives q3 + q functions to choose from.

Algorithms for discrete logarithms in finite fields and elliptic curves 101

Not quite there yet

We extended the base field to Fqk .
Set of φ with degx = degy = 1.

Still need to find C1.
Our target is Fqn , or some overfield.

Fqk [x , y]

C2

C1

(µ, ν)

Take C1 fairly simple too

C1 = h1(x)y − h0(x).

If h1(tq)t − h0(tq) has a degree n irreducible factor, bingo.

Requires some constraints be met: deg hi = δ ≥ 2 (constant);
coefficients of hi in Fqk ;
and of course: n ≤ δq + 1.

Algorithms for discrete logarithms in finite fields and elliptic curves 102

Not quite there yet

We extended the base field to Fqk .
Set of φ with degx = degy = 1.
Still need to find C1.
Our target is Fqn , or some overfield.

Fqk [x , y]

C2C1

(µ, ν)

Take C1 fairly simple too

C1 = h1(x)y − h0(x).

If h1(tq)t − h0(tq) has a degree n irreducible factor, bingo.

Requires some constraints be met: deg hi = δ ≥ 2 (constant);
coefficients of hi in Fqk ;
and of course: n ≤ δq + 1.

Algorithms for discrete logarithms in finite fields and elliptic curves 102

Not quite there yet

We extended the base field to Fqk .
Set of φ with degx = degy = 1.
Still need to find C1.
Our target is Fqn , or some overfield.

Fqk [x , y]

C2C1

(µ, ν)

Take C1 fairly simple too

C1 = h1(x)y − h0(x).

If h1(tq)t − h0(tq) has a degree n irreducible factor, bingo.

Requires some constraints be met: deg hi = δ ≥ 2 (constant);
coefficients of hi in Fqk ;
and of course: n ≤ δq + 1.

Algorithms for discrete logarithms in finite fields and elliptic curves 102

The constraint on q
What does the constraint on q imply if we target, say, F21279 ?

We are ready to accept working in a mildly larger field;
Taking δ = 2 would call for Fq to be at least F210 .
With δ = 5, q = 256 suffices.
We’re bound to need another base extension.

Base extension summary

Overall, for solving DLP in Fpn , we consider instead

Fqkn = Fpmn , with m = O(log n).

Eventually, because of base extensions, our difficulty measure n
becomes O(n log n). No big deal.

Note: for composite n, the required subfields might be built-in.

Algorithms for discrete logarithms in finite fields and elliptic curves 103

The constraint on q
What does the constraint on q imply if we target, say, F21279 ?

We are ready to accept working in a mildly larger field;
Taking δ = 2 would call for Fq to be at least F210 .
With δ = 5, q = 256 suffices.
We’re bound to need another base extension.

Base extension summary

Overall, for solving DLP in Fpn , we consider instead

Fqkn = Fpmn , with m = O(log n).

Eventually, because of base extensions, our difficulty measure n
becomes O(n log n). No big deal.

Note: for composite n, the required subfields might be built-in.
Algorithms for discrete logarithms in finite fields and elliptic curves 103

Setting summary

Base field is Fqk , with q large enough and k ≥ 2.
Two simple genus 0 curves:

C1 : h1(x)y − h0(x) = 0,
C2 : yq = x .

Pick φa,b,c,d = (aqx + bq)(cy + d)− (ay + b)(cqx + dq);

On the C2 side, we split into degree one polynomials in y .
On the C1 side, Res(φ,C1) has degree δ + 1 in x .

For δ a constant, we have a constant proportion of φ’s which
are smooth on the C1 side.
For k = 2: linear system of size Θ(q3 + q)× (q2 + 1).
Heuristically full rank.

Algorithms for discrete logarithms in finite fields and elliptic curves 104

Setting summary

φa,b,c,d

function on
C1 : h1(x)y−h0(x)

function on
C2 : yq − x

evaluation on (µ, ν)
often smooth smooth by construction

What is the factor base, exactly ?

Our mechanism reaches smoothness with degree 1 factors.

relations are between {µ− a} and {ν − b} for a, b ∈ Fqk

factor base folding: {µ− a} = {(ν − b)q}.

Complexity: O(qmin(kω,2k+1)) = polynomial time.
This only gives us degree 1 objects.

Algorithms for discrete logarithms in finite fields and elliptic curves 105

Relation collection is now easy

What have we achieved ?

We have new polynomial-time algorithm which is able to
collect relations and find logarithms for elements of degree 1.
This is something we did not have before. Even the log of
something “small” was hard to guess.
We need to work on a descent procedure which makes it
possible to relate arbitrary log’s to known ones.

We have deliberately omitted some technicalities (“traps”) which
change nothing to the general picture.

Algorithms for discrete logarithms in finite fields and elliptic curves 106

Plan

Instances of the FFS setting

New construction

Descent techniques

Complexity

Problem statement

Input: an element P(µ) ∈ Fqkn , for degP > 1.
Output: a rewritten expression:

logg P(µ) =
∑

a∈Fqk

ea logg (µ− a).

Algorithms for discrete logarithms in finite fields and elliptic curves 107

The descent
Assumption: we have precomputed log’s of factor base elements.
The descent is the art of turning the DLP computation into a
recursive problem.

One descent step

Input: a challenge discrete logarithm to compute for an element of
some given size.
Output: an identity which allows to derive the desired log from
log’s of smaller elements.

Historical notes:

Coppersmith84 was the first algorithm featuring a descent.
Many of the NFS-DL/FFS papers from 1993 to 2006
introduced new (not always correct) variations for the descent.

Algorithms for discrete logarithms in finite fields and elliptic curves 108

Example

Start with h = (some integer).
Start with a relation involving h:

a − bm = × × · · · × × ,

(a − bα) = × · · · × × .

Then find relations killing all the outstanding terms:

a − bm = × × · · · × ; (a − bα) = × · · · × ;
a − bm = × · · · × ; (a − bα) = × × · · · × ;

a − bm = × × · · · × ; (a − bα) = × · · · × ;
a − bm = × · · · × ; (a − bα) = × × · · · × ;

Algorithms for discrete logarithms in finite fields and elliptic curves 109

Example

Start with h = (some integer).
Start with a relation involving h:

a − bm = × × · · · × × ,

(a − bα) = × · · · × × .

Then find relations killing all the outstanding terms:

a − bm = × × · · · × ; (a − bα) = × · · · × ;
a − bm = × · · · × ; (a − bα) = × × · · · × ;

a − bm = × × · · · × ; (a − bα) = × · · · × ;
a − bm = × · · · × ; (a − bα) = × × · · · × ;

Algorithms for discrete logarithms in finite fields and elliptic curves 109

Descent tools

Several recursive techniques have been developed.

Same techniques as for FFS are still valid;
Polynomial system based techniques; [Joux13]
General QPA elimination; [BGJT14]
On the fly elimination for even degree P. [GKZ14]

In practice, all techniques may be combined.

Algorithms for discrete logarithms in finite fields and elliptic curves 110

Descent tools

Wanted: φ with P(µ) involved in the corresponding relation.

Strategy 1: force P(x) to appear on the C1 side.
Strategy 2: force P̌(y) to appear on the C2 side.
(with P̌(y) =

∑
i pqk−1

i (y), such that (P̌(y))q = P(x))

In all cases, we want the relation obtained to have P(µ) as the
largest degree thing, with other terms having smaller degree.

Strategy 1 is in the polynomial-system-based approach, as well as
the on-the-fly even degree elimination.
Strategy 2 is in the QPA article.

Algorithms for discrete logarithms in finite fields and elliptic curves 111

Forcing P̌ on the C2 side

Start with the easy choice: φ = P(x)− P̌(y).

On C2, this rewrites as

(P̌(y))q − P̌(y) =
∏
α∈Fq

P̌(y)− α.

This is one relation, but:
We are not sure this φ gives smooth C1 side.
The relation involves many other polynomials of same degree.

Use homographies again: let aP̌+b
cP̌+d appear.

φ
(P)
a,b,c,d = (aqP(x) + bq)(cP̌(y) + d)− (aP̌(y) + b)(cqP(x) + dq)

Algorithms for discrete logarithms in finite fields and elliptic curves 112

Forcing P̌ on the C2 side

φ
(P)
a,b,c,d = (aqP(x) + bq)(cP̌(y) + d)− (aP̌(y) + b)(cqP(x) + dq)

Same machinery; a, b, c, d run over PGL2(Fqk)/PGL2(Fq).
On side C1, we have a polynomial of degree (δ + 1) degP.
A constant proportion of the a, b, c, d yield smooth C1 side.
For example we may target 1

2 degP smoothness.

Halfway there

We have Θ(q3 + q) (for k = 2) relations of the kind Li = Ri .

On the left, we have factors f with deg f ≤ 1
2 degP (e.g.).

On the right, factors among {P − γ, γ ∈ Fqk}.

Algorithms for discrete logarithms in finite fields and elliptic curves 113

Letting only P show up

Our starting polynomial P sometimes appears in Ri .
We now do a multiplicative combination of all relations.∏

i
Lei

i ≡
∏

i
Rei

i .

We would like to have
∏

i R
ei
i ≡ P.

This is a linear system. We need the vector (1,
q2︷ ︸︸ ︷

0, . . . , 0) be in
the image (assuming some adequate indexing).

Algorithms for discrete logarithms in finite fields and elliptic curves 114

Can we solve the linear system ?

For
∏

i R
ei
i ≡ P to be possible, we need:

Heuristic
The linear system of size Θ(q3 + q)× (q2 + 1) has full rank.

Note: if we hadn’t restricted our view to smooth relations:

We would have a system of size (q3 + q)× (q2 + 1).
Combinatorial design theory recognizes an inversive plane
there. This proves that the (big) matrix has full rank.
Yet, saying something about our few selected rows is difficult.

Algorithms for discrete logarithms in finite fields and elliptic curves 115

Which kind of relation do we get ?

For splitting one polynomial P, we need a multiplicative
combination of as many as q2 + 1 left-hand sides Li !
This means that the arity of the descent tree will be large:

O(q2) LHS expressions.
O(degP) terms per LHS.
Arity at most O(q2 degP).

Algorithms for discrete logarithms in finite fields and elliptic curves 116

Other descent techniques
First descent method found by Joux forces P on the C1 side:

take φ = u1(x)ǔ2(y)− ǔ1(y)u2(x)

Put indeterminates for coefficients of u1 and u2.
The condition “P appears on the C1 side” is a bilinear
polynomial system.
To get enough degrees of freedom, we need:

deg u1 + deg u2 > degP.

Bilinear polynomial system solving: min(deg u1, deg u2) matters.

Any solution to the system will do.
We get arity O(q) at each step.
Solving the system is not completely cheap though.
Not enough to reach quasi-polynomial complexity.

Algorithms for discrete logarithms in finite fields and elliptic curves 117

On-the-fly technique by Granger et al.

Assume P has degree 2d . Note that P splits in Fqkd .

P(x) = f (x)× f σ(x)× · · · × f σd−1(x),

where all fi are quadratic polynomials over Fqkd .

Base-extend to Fqkd and find appropriate rewriting for f (x)
into linear polynomials;
Beware: Fqkd is large !
Take NormFqkd /Fqk to obtain a rewritten expression for P.

P is the only term of degree 2d ;
All other terms have degree dividing d .

Arity obtained is O(q).
Extreme case: degrees which are powers of two are best !

Algorithms for discrete logarithms in finite fields and elliptic curves 118

Plan

Instances of the FFS setting

New construction

Descent techniques

Complexity

The descent tree

Each node of the descent tree corresponds to one application of
the new descent tool, hence its arity is in O(q2 degP), or O(q) for
degP even.

level degPi breadth of tree
0 D 1
1 D/2 q2D
2 D/4 q2D · q2 D

2
3 D/8 q2D · q2 D

2 · q
2 D
4...

...
...

logD 1 ≤ q2 logDDlogD

Total number of nodes = qO(logD).
Each node entails a cost which is polynomial in q.

Algorithms for discrete logarithms in finite fields and elliptic curves 119

Bottom of the tree

At level logD, we are below some constant degree (say 2).
Several techniques may be used for descending from there to the
set of known logs:

Continue with the descent procedure so as to get something
overdetermined;
Use the ad hoc degree 2 technique from [GGMZ13,GKZ14].

Overall complexity

qO(logD) nodes, O(q5) per node Complexity qO(logD) .

Algorithms for discrete logarithms in finite fields and elliptic curves 120

Main result

Main result
Discrete logarithms in Fqn can be computed in heuristic time

max(q, n)O(log n).

Example for K = F2p : Base-extend to Fq with q ≈ p.
Cost is pO(log p) = exp(O((log p)2)).
This is quasi-polynomial.

Algorithms for discrete logarithms in finite fields and elliptic curves 121

Conclusion

New algorithm Quasi-polynomial complexity.
Relies on heuristic, experimentally checked.

Cross-over with existing techniques ?
Some contexts are totally unsafe now:

Highly composite extension degrees (many subfields);
Fields from small characteristic pairings.

Striking computational records for these easy targets.
More general case: [GKZ14] has clearly made FFS obsolete.

Tackled F21279 ;
The on-the-fly technique is a clear asset.
Combination of tools used.

Take home:
RIP small characteristic pairings.
No, this does not affect RSA, nor large characteristic DLP.

Algorithms for discrete logarithms in finite fields and elliptic curves 122

Algorithms for discrete logarithms in finite fields and elliptic curves 1

References I

[Adl79] L. M. Adleman, A subexponential algorithm for the discrete
logarithm problem with applications to cryptography, 20th Annual
Symposium on Foundations of Computer Science (FOCS ’79), 1979,
pp. 55–60. San Juan, Puerto Rico, October 29–31, 1979.

[Adl94] , The function field sieve, ANTS-I, 1994, pp. 108–121. 1st
Algorithmic Number Theory Symposium, Cornell University, May
6–9, 1994.

[ADH94] L. M. Adleman, J. DeMarrais, and M.-D. Huang, A subexponential
algorithm for discrete logarithms over the rational subgroup of the
jacobians of large genus hyperelliptic curves over finite fields,
ANTS-I, 1994, pp. 28–40. 1st Algorithmic Number Theory
Symposium, Cornell University, May 6–9, 1994.

[AH99] L. M. Adleman and M.-D. Huang, Function field sieve methods for
discrete logarithms over finite fields, Inform. and Comput. 151
(1999), no. 1, 5–16.

Algorithms for discrete logarithms in finite fields and elliptic curves 2

References II

[BBD+12] Răzvan Bărbulescu, Cyril Bouvier, Jérémie Detrey, Pierrick Gaudry,
Hamza Jeljeli, Emmanuel Thomé, Marion Videau, and Paul
Zimmermann, The relationship between some guy and
cryptography, 2012. ECC2012 rump session talk (humoristic), short
computation report.

[BBD+14] , Discrete logarithms in GF(2809) with FFS, Public Key
Cryptography - PKC 2014, 2014, pp. 221–238. Proc. 17th
International Conference on Practice and Theory in Public Key
Cryptography, Buenos Aires, Argentina, Mar. 26-28, 2014.

[BF01] D. Boneh and M. Franklin, Identity-based encryption from the Weil
pairing, Advances in Cryptology – CRYPTO 2001, 2001,
pp. 213–229. Proc. 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001.

[BLS04] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the
Weil pairing, J. Cryptology 17 (2004), no. 4, 297–319.

Algorithms for discrete logarithms in finite fields and elliptic curves 3

References III

[Cop84] D. Coppersmith, Fast evaluation of logarithms in fields of
characteristic two, IEEE Trans. Inform. Theory IT–30 (1984), no. 4,
587–594.

[DH84] J. A. Davis and D. B. Holridge, Factorization using the quadratic
sieve algorithm, Advances in Cryptology – CRYPTO ’83, 1984,
pp. 103–113. Proc. Cryptology Workshop, Santa Barbara, CA,
August 22–24, 1983.

[EGT11] Andreas Enge, Pierrick Gaudry, and Emmanuel Thomé, An L(1/3)
discrete logarithm algorithm for low degree curves, J. Cryptology 24
(2011), no. 1, 24–41.

[FK05] Jens Franke and Thorsten Kleinjung, Continued fractions and lattice
sieving, Special-purpose hardware for attacking cryptographic
Systems – SHARCS, 2005.

[Gor93] D. M. Gordon, Discrete logarithms in GF(p) using the number field
sieve, SIAM J. Discrete Math. 6 (1993), no. 1, 124–138.

Algorithms for discrete logarithms in finite fields and elliptic curves 4

References IV
[GKZ14] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel, Discrete

Logarithms in GF(29̂234), January 2014. Email to the NMBRTHRY
mailing-list.

[Heß04] F. Heß, Computing relations in divisor class groups of algebraic
curves over finite fields, 2004. Preprint, submitted to J. Symbolic
Comput. Available at http://www.staff.uni-oldenburg.de/
florian.hess/publications/dlog.pdf.

[Jou00] Antoine Joux, A one round protocol for tripartite Diffie-Hellman,
ANTS-IV, 2000, pp. 385–393. 4th Algorithmic Number Theory
Symposium, Leiden, The Netherlands, July 2–7, 2000.

[JL01a] Antoine Joux and Reynald Lercier, Discrete logarithms in GF(p)
(110 decimal digits), January 2001. Email to the NMBRTHRY
mailing-list.

[JL01b] , Discrete logarithms in GF(p) (120 decimal digits), April
2001. Email to the NMBRTHRY mailing-list.

[JL01c] , Discrete logarithms in GF(2n) (521 bits), September 2001.
Email to the NMBRTHRY mailing-list.

Algorithms for discrete logarithms in finite fields and elliptic curves 5

http://www.staff.uni-oldenburg.de/florian.hess/publications/dlog.pdf
http://www.staff.uni-oldenburg.de/florian.hess/publications/dlog.pdf

References V

[JL02] , The function field sieve is quite special, ANTS-V, 2002,
pp. 431–445. 5th Algorithmic Number Theory Symposium, Sydney,
Australia, July 2002.

[JL03] , Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer
method, Math. Comp. 72 (2003), no. 242, 953–967.

[JL05a] , Discrete logarithms in GF(p) - 130 digits, June 2005.
Email to the NMBRTHRY mailing-list.

[JL05b] , Discrete logarithms in GF(2607) and GF(2613), September
2005. Email to the NMBRTHRY mailing-list.

[JL05c] , Discrete logarithms in GF(6553725) - 120 digits - 400 bits,
October 2005. Email to the NMBRTHRY mailing-list.

[JL05d] , Discrete logarithms in GF(37080130) - 168 digits - 556
bits, November 2005. Email to the NMBRTHRY mailing-list.

Algorithms for discrete logarithms in finite fields and elliptic curves 6

References VI

[JLSV06] Antoine Joux, Reynald Lercier, Nigel P. Smart, and Frederik
Vercauteren, The number field sieve in the medium prime case,
Advances in Cryptology – CRYPTO 2006, 2006, pp. 326–344. Proc.
26th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2006.

[Kle07] Thorsten Kleinjung, Discrete logarithms in GF(p) - 160 digits, May
2007. Email to the NMBRTHRY mailing-list.

[LL93] Arjen K. Lenstra and H. W. Lenstra Jr (eds.), The development of
the number field sieve, Lecture Notes in Math., vol. 1554,
Springer–Verlag, 1993.

[LV00] Arjen K. Lenstra and E. R. Verheul, The XTR public key system,
Advances in Cryptology – CRYPTO 2000, 2000, pp. 1–19. Proc.
20th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20–24, 2000.

Algorithms for discrete logarithms in finite fields and elliptic curves 7

References VII

[Mau94] U. M. Maurer, Towards the equivalence of breaking the
Diffie-Hellman protocol and computing discrete logarithms,
Advances in Cryptology – CRYPTO ’94, 1994, pp. 271–281. Proc.
14th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 21–25, 1994.

[MW96] U. M. Maurer and S. Wolf, Diffie-Hellman oracles, Advances in
Cryptology – CRYPTO ’96, 1996, pp. 268–282. Proc. 16th Annual
International Cryptology Conference, Santa Barbara, CA, USA,
August 1996.

[MSV04] A. Muzereau, Nigel P. Smart, and Frederik Vercauteren, The
equivalence between the DHP and DLP for elliptic curves used in
practical applications, LMS J. Comput. Math. 7 (2004), 50–72.

[Nec94] V. I. Nechaev, Complexity of a determinate algorithm for the
discrete logarithm, Mathematical Notes 55 (1994), no. 2, 165–172.

[vOW99] P. C. van Oorschot and M. J. Wiener, Parallel collision search with
cryptanalytic applications, J. Cryptology 12 (1999), 1–28.

Algorithms for discrete logarithms in finite fields and elliptic curves 8

References VIII

[Pol93] J. M. Pollard, The lattice sieve, The development of the number
field sieve, 1993, pp. 43–49.

[QD90] Jean-Jacques Quisquater and J.-P. Delescaille, How easy is collision
search? Application to DES, Advances in Cryptology –
EUROCRYPT ’89, 1990, pp. 429–434. Proc. Eurocrypt ’89,
Houthalen, April 10–13, 1989.

[RS08] Karl Rubin and Alice Silverberg, Compression in Finite Fields and
Torus-Based Cryptography, SIAM J. Comput. 37 (2008), no. 5,
1401–1428.

[Sch99] O. Schirokauer, Using number fields to compute logarithms in finite
fields, Math. Comp. 69 (1999), no. 231, 1267–1283.

[Sho97] Victor Shoup, Lower bounds for discrete logarithms and related
problems, Advances in Cryptology – EUROCRYPT ’97, 1997,
pp. 256–266. Proc. International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May
1997.

Algorithms for discrete logarithms in finite fields and elliptic curves 9

References IX

[Tho02] Emmanuel Thomé, Discrete logarithms in GF(2607), 2002/02/23.
Email to the NMBRTHRY mailing-list, short computation report.

[Web95] D. Weber, An implementation of the general number field sieve to
compute discrete logarithms mod p, Advances in Cryptology –
EUROCRYPT ’95, 1995, pp. 95–105. Proc. International
Conference on the Theory and Application of Cryptographic
Techniques, Saint-Malo, France, May 1995.

Algorithms for discrete logarithms in finite fields and elliptic curves 10

	Context and old algorithms
	Context, motivations
	Definition
	What is hardness?
	Good and bad families – should we care only about EC?
	Cost per logarithm

	Exponential algorithms
	Baby-step–Giant-step and
	Parallel collision search
	Some ECDLP records

	L(1/2) algorithms
	Smoothness, and combination of congruences
	Adleman's algorithm
	Analysis of Adleman's algorithm
	Adaptation – Other L(1/2) algorithms

	L(1/3) algorithms
	History and setting
	General setup – easy example with FFS
	NFS-DL
	NFS-DL setting and headaches
	Rough analysis

	DLP in GF(pn)
	L(1/3) for large genus, small degree curves

	Computationally hard tasks in NFS
	Sieving
	Sieving basics
	Lattice sieving

	Linear algebra
	NFS-DL/FFS Guinness book

	Quasi-polynomial DLP in small characteristic
	Instances of the FFS setting
	New construction
	Descent techniques
	Complexity

	Appendix

