Hyperelliptic Curves

Benjamin Smith

Team GRACE
INRIA Saclay-Île-de-France
Laboratoire d'Informatique de l'École polytechnique (LIX)
smith@lix.polytechnique.fr
\section*{ECC Summer School 2015}

Disclaimer

So far you've seen elliptic curves
from both a low-level, implementation point of view and a high-level, theoretical point of view.

I'll try to take a "middlebrow" point of view.
(I can't promise we'll have the same idea of where "middle" is, though.)

We work over a perfect field \mathbb{k}.

Perfect?!

- Every irred. poly. over \mathbb{k} has distinct roots in $\mathbb{\mathbb { k }}$
- Equivalently: Either $\operatorname{char}(\mathbb{k})=0$, or $\operatorname{char}(\mathbb{k})=p$ and the Frobenius $\alpha \mapsto \alpha^{p}$ is an automorphism.
- Finite fields: $\mathbb{k}=\mathbb{F}_{q}$ (what we're really interested in)
- Characteristic $0: \mathbb{k}=\mathbb{Q}, \mathbb{Q}(\sqrt{13}), \mathbb{Q}(t), \mathbb{Q}_{p}, \mathbb{R}, \mathbb{C}, \ldots$
- ...But not (e.g.) $\mathfrak{k}=\mathbb{F}_{q}(t)$
(because then weird stuff happens with $t^{1 / p}$, etc.)

Something (a point, a set, a curve, a function) is defined over \mathbb{k} if it is fixed by $\operatorname{Gal}(\overline{\mathbb{k}} / \mathbb{k})$.

If X is a thing,

then $X(\mathbb{k})$ denotes its elements/points defined over \mathbb{k}.
If $\mathbb{k}=\mathbb{F}_{q}$, then the objects defined over \mathbb{F}_{q} are those fixed by/commuting with the q-power Frobenius.

From elliptic to hyperelliptic curves

We've considered cryptosystems built from elliptic curves. But what's so special about elliptic curves?

Today: \mathcal{X} denotes an algebraic curve over \mathbb{k}.
Examples:

- $\mathcal{X}=\mathbb{P}^{1}=$ a line
- $\mathcal{X}=$ an elliptic curve $\mathcal{E}: y^{2}=x^{3}+A x+B$
- $\mathcal{X}: y^{2}=f(x)$ with $\operatorname{deg} f>4$ (hyperelliptic curves)
- ...More generally, a plane curve $\mathcal{X}: F(x, y)=0$ in \mathbb{A}^{2}

Hyperelliptic Curves

$$
\mathcal{X}: y^{2}=f(x)=x^{d}+\cdots
$$

with f squarefree, of degree $d>4$.
(NB: $d=1,2 \Longrightarrow$ conics; $d=3,4 \Longrightarrow$ elliptic.)
Hyperelliptic involution:

$$
\iota:(x, y) \longmapsto(x,-y) .
$$

d odd \Longrightarrow one point ∞ at infinity. d even \Longrightarrow two points ∞_{+}, ∞_{-}at infinity.
Key: $P \mapsto x(P)$ defines a double cover $\mathcal{X} \rightarrow \mathcal{X} /\langle\iota\rangle \cong \mathbb{P}^{1}$.

The function field

If $\mathcal{X}: F(x, y)=0$ is a plane curve over \mathbb{k}, then its function field is

$$
\mathbb{k}(\mathcal{X})=\mathbb{k}(x)[y] /(F(x, y)) .
$$

Its elements are rational fractions in x and y, modulo the curve equation $F(x, y)=0$.

For more general curves:
$\mathbb{k}(\mathcal{X}):=$ fraction field of the coordinate ring.

Zeroes and Poles

Rational functions on \mathcal{X} have poles and zeroes:
The zeroes of f are the points P on \mathcal{X} where $f(P)=0$.
The poles of f are the points P on \mathcal{X} where $f(P)=\infty$.
Note: (zeroes and poles can occur with multiplicity > 1.)
Theorem
If f is a nonzero function in $\overline{\mathbb{k}}(\mathcal{X})$, then
(1) f has only finitely many zeroes and poles, and
(2 counted with multiplicity, \#zeroes $(f)=\# \operatorname{poles}(f)$.

Orders of vanishing

Let f be a nonzero function on \mathcal{X}.
We define $\operatorname{ord}_{P}(f)$ to be the order of vanishing of f at P :

- $\operatorname{ord}_{P}(f):=n$ if f has a zero of multiplicity n at P
- $\operatorname{ord}_{P}(f):=-n$ if f has a pole of multiplicity n at P
- $\operatorname{ord}_{P}(f):=0$ otherwise.

Useful rules:

- $\operatorname{ord}_{P}(f g)=\operatorname{ord}_{P}(f)+\operatorname{ord}_{P}(g)$ for all f, g, P
- $\operatorname{ord}_{P}(f / g)=\operatorname{ord}_{P}(f)-\operatorname{ord}_{P}(g)$ for all f, g, P
- $\operatorname{ord}_{P}(\alpha)=0$ for all constants $\alpha \neq 0$ in $\overline{\mathbb{k}}$
- $\operatorname{ord}_{P}\left(\sum_{i} \alpha_{i} x^{a_{i}} y^{b_{i}}\right)=n$ if the curve $\sum_{i} \alpha_{i} X^{x_{i}} y^{b_{i}}=0$ intersects $\mathcal{X} n$ times at P

Principal divisors

Each function $f \neq 0$ on \mathcal{X} has an associated principal divisor. that is, a formal sum

$$
\operatorname{div}(f)=\sum_{P \in \mathcal{X}\left(\overline{\mathbb{F}}_{q}\right)} \operatorname{ord}_{P}(f)(P)
$$

(1) $\operatorname{div}(f)=0$ if and only if f is constant (in $\overline{\mathbb{k}}_{q} \backslash\{0\}$);
(0) $\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g)$ and $\operatorname{div}(f / g)=\operatorname{div}(f)-\operatorname{div}(g) ;$

- $\operatorname{div}(f)=\operatorname{div}(g) \Longleftrightarrow f=\alpha g$ for some $\alpha \neq 0$ in $\overline{\mathbb{F}}_{q}$.

Functions are determined by their principal divisors, up to constant factors.

The set of principal divisors is denoted $\operatorname{Prin}(\mathcal{X})$:

$$
\operatorname{Prin}(\mathcal{X}):=\{\operatorname{div}(f): f \in \overline{\mathbb{k}}(\mathcal{X})\}
$$

Since $\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g)$, we see that

$$
\operatorname{Prin}(\mathcal{X}) \text { is a group. }
$$

If you like exact sequences:

$$
1 \longrightarrow \overline{\mathbb{k}}^{\times} \longrightarrow \overline{\mathbb{k}}(\mathcal{X})^{\times} \longrightarrow \operatorname{Prin}(\mathcal{X}) \longrightarrow 0
$$

Examples

Consider the elliptic curve $\mathcal{E}: y^{2}=x^{3}+1$ over \mathbb{F}_{13}.

- $\operatorname{div}(x)=(0,1)+(0,-1)-2 \infty$;
- $\operatorname{div}(y)=(-1,0)+(4,0)+(-3,0)-3 \infty$;
- $\operatorname{div}\left(x^{2} / y\right)=$
$2(0,-1)+2(0,1)-(-1,0)-(4,0)-(-3,0)-\infty ;$
- $\operatorname{div}\left(\frac{x^{2}-y-1}{x y}\right)=$
$(0,-1)+(2,3)+\infty-(0,1)-(-3,0)-(4,0)$.
More generally:
If $f(x, y)=0$ is the line through P and Q, then $\operatorname{div}(f)=P+Q+(\ominus(P \oplus Q))-3 \infty$.

General divisors

Divisors on \mathcal{X} are formal sums of points in $\mathcal{X}(\overline{\mathbb{k}})$ with arbitrary coefficients in \mathbb{Z};

We define the (free abelian, infinitely generated) group

$$
\operatorname{Div}(\mathcal{X}):=\left\{\sum_{P \in \mathcal{X}\left(\overline{\mathbb{F}}_{q}\right)} n_{P}(P)\right\}
$$

with the n_{P} in \mathbb{Z}, and only finitely many $n_{P} \neq 0$. Observe that $\operatorname{Prin}(\mathcal{X}) \subset \operatorname{Div}(\mathcal{X})$.

The Picard group

The divisor group $\operatorname{Div}(\mathcal{X})$ is way too big, and doesn't tell us anything about the geometry of \mathcal{X}.

We work with the quotient

$$
\operatorname{Pic}(\mathcal{X}):=\operatorname{Div}(\mathcal{X}) / \operatorname{Prin}(\mathcal{X}) .
$$

Elements are divisor classes:

$$
[D]=\{D+\operatorname{div}(f): f \in \overline{\mathbb{k}}\}
$$

Degree

We have a degree homomorphism $\operatorname{deg}: \operatorname{Div}(\mathcal{X}) \rightarrow \mathbb{Z}$,

$$
\operatorname{deg}\left(\sum_{P} n_{P}(P)\right)=\sum_{P} n_{P} .
$$

Its kernel is a subgroup of $\operatorname{Div}(\mathcal{X})$, denoted $\operatorname{Div}^{0}(\mathcal{X})$:
$\operatorname{Div}^{0}(\mathcal{X}):=\operatorname{ker} \operatorname{deg}=\{D \in \operatorname{Div}(\mathcal{X}): \operatorname{deg}(D)=0\} \subset \operatorname{Div}(\mathcal{X})$.
Every function has the same number of zeroes and poles, so

$$
\operatorname{Prin}(\mathcal{X}) \subset \operatorname{Div}^{0}(\mathcal{X}) \quad \text { and } \quad \operatorname{Prin}(\mathcal{X})(\mathbb{k}) \subset \operatorname{Div}^{0}(\mathcal{X})(\mathbb{k}) .
$$

This inclusion is strict for almost all curves: not every divisor of degree zero is principal!

Why are they called divisors?

Idea: degree-0 divisors are "parts of functions".
Example: Consider $\mathcal{E}: y^{2}=x^{3}+1$. The divisors

$$
D_{1}=(0,1)-\infty \quad \text { and } \quad D_{2}=(0,-1)-\infty
$$

are both in $\operatorname{Div}^{0}(\mathcal{E})$. Neither is principal, but

$$
D_{1}+D_{2}=\operatorname{div}(x)
$$

So we can view D_{1} and D_{2} as being "parts" (or even "factors") of the function x...

Degrees of divisor classes

deg is well-defined on divisor classes:

$$
\begin{aligned}
\operatorname{deg}: \operatorname{Pic}(\mathcal{X}) & \longrightarrow \mathbb{Z} \\
{[D] } & \longrightarrow \operatorname{deg}(D)
\end{aligned}
$$

(since $\operatorname{deg}(\operatorname{div}(f))=0$ for all f).
$\Longrightarrow \operatorname{Div}^{0}(\mathcal{X})$ splits up into divisor classes: we set

$$
\begin{aligned}
\operatorname{Pic}^{0}(\mathcal{X}) & :=\operatorname{ker}(\operatorname{deg}: \operatorname{Pic}(\mathcal{X}) \rightarrow \mathbb{Z}) \\
& =\operatorname{Div}^{0}(\mathcal{X}) / \operatorname{Prin}(\mathcal{X})
\end{aligned}
$$

The map $D \mapsto(D-\operatorname{deg}(D) \infty, \operatorname{deg}(D))$ defines isomorphisms

$$
\begin{aligned}
\operatorname{Div}(\mathcal{X}) & \cong \operatorname{Div}^{0}(\mathcal{X}) \times \mathbb{Z} \\
\operatorname{Pic}(\mathcal{X}) & \cong \operatorname{Pic}^{0}(\mathcal{X}) \times \mathbb{Z}
\end{aligned}
$$

The "interesting" stuff all happens in $\operatorname{Pic}^{0}(\mathcal{X})$.
In fact, $\operatorname{Pic}^{0}(\mathcal{X})$ has the structure of an abelian variety:
a geometric object defined by polynomial equations in projective coordinates, with a polynomial group law.
(Stop and think about what this means for a minute: in some weird universe, divisor classes are defined by tuples of coordinates, and addition of divisor classes modulo linear equivalence is defined by polynomial formulæ in those coordinates!)

Differentials

Differentials on \mathcal{X} look like $g d f$, where g and f are in $\mathbb{k}(\mathcal{X})$,
with $g_{1} d f_{1}=g_{2} d f_{2} \Longleftrightarrow \frac{g_{2}}{g_{1}}=\frac{d f_{1}}{d f_{2}} \quad(\leftarrow$ usual derivative $)$.
Differentials obey the usual product rule: $d(f g)=f d g+g d f$. Also: $d(\alpha f+\beta g)=\alpha d f+\beta d g$ and $d \alpha=0$ for α, β in $\overline{\mathbb{k}}$.

For example: on $\mathcal{E}: y^{2}=x^{3}+1$, we have

$$
2 y d y=3 x^{2} d x
$$

Differentials are not functions on \mathcal{X} : they give linear functions on the tangent spaces of \mathcal{X}.

The space of differentials

The differentials on \mathcal{X} form a one-dimensional $\overline{\mathbb{k}}(\mathcal{X})$-vector space, $\Omega(\mathcal{X})$.

That is: if we fix some differential $d x$, then every other differential in $\Omega(\mathcal{X})$ is equal to $f d x$ for some function f.

On the other hand:
$\Omega(\mathcal{X})$ is an infinite-dimensional $\overline{\mathbb{k}}$-vector space.

Divisors of differentials

Differentials have divisors!
First, for each point P of \mathcal{X}, we fix a local parameter t_{P} near P on \mathcal{X} : ie any function with a simple zero at P.

If ω is a differential then $\omega / d t_{P}$ is a function, so we set

$$
\operatorname{ord}_{P}(\omega):=\operatorname{ord}_{P}\left(\omega / d t_{P}\right)
$$

(amazingly, ord $p(\omega)$ is independent of choice of t_{p}) and

$$
\operatorname{div}(\omega):=\sum_{P \in \mathcal{X}} \operatorname{ord}_{P}(\omega)
$$

Example on an elliptic curve

What is the divisor of $d x$ on an elliptic curve $\mathcal{E}: y^{2}=f(x)$?
At points (α, β) where $\beta \neq 0$, we can use $t_{(\alpha, \beta)}=x-\alpha$:

$$
\operatorname{ord}_{(\alpha, \beta)}(d x)=\operatorname{ord}_{(\alpha, \beta)}\left(\frac{d x}{d(x-\alpha)}\right)=\operatorname{ord}_{(\alpha, \beta)}(1)=0
$$

If $\beta=0$ then $x-\alpha$ is not a local parameter at $(\alpha, 0)$
(it has a double zero), but we can use $t_{(\alpha, 0)}=y$; hence

$$
\operatorname{ord}_{(\alpha, 0)}(d x)=\operatorname{ord}_{(\alpha, 0)}\left(\frac{d x}{d y}\right)=\operatorname{ord}_{(\alpha, 0)}\left(\frac{2 y}{f^{\prime}(x)}\right)=1
$$

At infinity: we can take $t_{\infty}=x / y$, so

$$
\operatorname{ord}_{\infty}(x)=\operatorname{ord}_{\infty}\left(\frac{d x}{d(x / y)}\right)=\operatorname{ord}_{\infty}\left(\frac{y f^{\prime}(x)}{f^{\prime}(x)-2 x}\right)=-3
$$

Canonical divisors

$\operatorname{div}(f \omega)=\operatorname{div}(\omega)+\operatorname{div}(f)$ for all $f \in \overline{\mathbb{k}}(\mathcal{X}), \omega \in \Omega(\mathcal{X})$, so the divisors of differentials on \mathcal{X} are all in the same divisor class, which we call the canonical class [K].
Any divisor in $[K]$ is called a canonical divisor.

$$
\begin{gathered}
\text { On } \mathcal{H}: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right), \text { we have } \\
K=\operatorname{div}(d x)= \begin{cases}\sum_{i=1}^{d}\left(\alpha_{i}, 0\right)-3 \infty & d \text { odd } \\
\sum_{i=1}^{d}\left(\alpha_{i}, 0\right)-2\left(\infty_{+}+\infty_{-}\right) & d \text { even }\end{cases}
\end{gathered}
$$

Nonconstant differentials with no poles

So: if $y^{2}=f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$, then

$$
\operatorname{div}(d x)=\left(\alpha_{1}, 0\right)+\left(\alpha_{2}, 0\right)+\left(\alpha_{3}, 0\right)-3 \infty
$$

Notice that $\operatorname{div}(y)=\operatorname{div}(d x)$, so

$$
\operatorname{div}\left(\frac{d x}{y}\right)=0
$$

-that is, the differential $d x / y$ is a nonconstant differential with no poles (or zeroes!).

Regular differentials

We call differentials with no poles regular.
The regular differentials on \mathcal{X} form
a (finite-dimensional) \mathbb{k}-vector space

$$
\Omega^{1}(\mathcal{X})=\{\omega \in \Omega(\mathcal{X}): \omega \text { is regular }\}
$$

The genus of \mathcal{X} is defined to be the dimension of $\Omega^{1}(\mathcal{X})$.

Genus of hyperelliptic curves

For hyperelliptic curves

$$
\mathcal{X}: y^{2}=f(x)=x^{d}+\cdots,
$$

we have

$$
\begin{gathered}
\Omega^{1}(\mathcal{X})=\left\langle\frac{d x}{y}, \frac{x d x}{y}, \ldots, \frac{x^{\lfloor(d-1) / 2-1\rfloor} d x}{y}\right\rangle \\
\text { so } \\
g(\mathcal{X})=\left\lfloor\frac{d-1}{2}\right\rfloor
\end{gathered}
$$

Explicit regular differentials

More generally, if \mathcal{X} / \mathbb{k} is a nonsingular plane curve of genus g defined by

$$
\mathcal{X}: F(x, y)=0,
$$

then its regular differentials are

$$
\Omega^{1}(\mathcal{X})=\left\langle\frac{x^{i}}{(\partial F / \partial y)(x, y)} d x\right\rangle_{i=0}^{g-1} .
$$

For any curve \mathcal{X}, we have $\operatorname{deg}(K)=2 g-2$.

Anomalous elliptic curves

Let's use differentials for something fun.
DLPs in the additive group are really fast:
they're just (modular) division.
When can we map an ECDLP instance into $\left(\mathbb{F}_{p},+\right)$?
A homomorphism $\mathcal{E}\left(\mathbb{F}_{p}\right) \longrightarrow\left(\overline{\mathbb{F}}_{p},+\right)$ can only be nontrivial if $p \mid \# \mathcal{E}\left(\mathbb{F}_{p}\right)$,
which (by Hasse) can only happen if $\# \mathcal{E}\left(\mathbb{F}_{p}\right)=p$.
We call these trace-1 curves anomalous curves.

Homomorphisms into the additive group

Suppose \mathcal{E} is defined over \mathbb{F}_{p}, and that $\# \mathcal{E}\left(\mathbb{F}_{p}\right)=p$.
Several approaches to mapping $\mathcal{E}\left(\mathbb{F}_{p}\right)$ into $\left(\mathbb{F}_{p},+\right)$
(Semaev, Smart, Araki-Satoh, Rück...)
Recall: $\operatorname{dim} \Omega^{1}(\mathcal{E})=1$, so $\Omega^{1}(\mathcal{E})=\left(\mathbb{F}_{p},+\right)$.
We will define a homomorphism

$$
\mathcal{E}\left(\mathbb{F}_{p}\right) \longrightarrow \Omega^{1}(\mathcal{E}) \cong\left(\mathbb{F}_{p},+\right)
$$

using an additive version of the Tate pairing.

Suppose $\# \mathcal{E}\left(\mathbb{F}_{p}\right)=p$. If P is in $\mathcal{E}\left(\mathbb{F}_{p}\right)$ then $[p] P=0$, so

$$
p(P-\infty)=\operatorname{div}\left(f_{P}\right)
$$

for some f_{P} in $\mathbb{F}_{p}(\mathcal{E})$ (a Miller function!)
Serre: the differential $\frac{d f_{p}}{f_{P}}$ is regular at ∞.
Expand $d f_{P} / f_{P}$ at ∞ with local parameter $t=\frac{x}{y}$:

$$
\frac{d f_{P}}{f_{P}}=\left(a_{0}+a_{1} t+a_{2} t^{2}+\cdots\right) d t
$$

$d f_{P} / f_{P}$ (and hence the a_{i}) depends only on P.
Product rule for differentials + Algebra of Miller functions \Longrightarrow
$P \longmapsto d f_{p} / f_{P} \longmapsto a_{0}$ is a homomorphism $\mathcal{E}\left(\mathbb{F}_{p}\right) \rightarrow \Omega^{1}(\mathcal{E}) \rightarrow\left(\mathbb{F}_{p},+\right)$!

Solving DLPs on anomalous curves

To solve a DLP instance $Q=[m] P$ on an anomalous curve $\mathcal{E} / \mathbb{F}_{p}$:

- Compute $a_{0}(P)$ and $a_{0}(Q)$ using Miller loops Don't compute f_{P}, f_{Q} : as in pairing computation, build up the a a_{0} values using double-and-add loops
© Then

$$
m \equiv a_{0}(Q) / a_{0}(P) \quad(\bmod p) .
$$

The number of $\mathcal{E}\left(\mathbb{F}_{p}\right)$-operations is linear in $\log p$.
This reduction is easy to implement! (It's an exercise for Friday afternoon.)

Into space!

Let's get back to functions on \mathcal{X}.
Evaluating functions at points maps us from \mathcal{X} to \mathbb{P}^{1}.
Evaluating a collection $\left\{f_{1}, \ldots, f_{n}\right\}$ of functions gives us a map $P \mapsto\left(f_{1}(P): \cdots: f_{n}(P): 1\right)$ into \mathbb{P}^{n}.

We want to control behaviour at infinity, hence the poles of the f_{i}.

Riemann-Roch Spaces

A divisor $D=\sum_{P} n_{P} P$ is effective if all of the $n_{P} \geq 0$.

We define

$L(D):=\{f \in \mathbb{k}(\mathcal{X}): D+\operatorname{div}(f)$ is effective $\} \cup\{0\}$
...So $L(D)$ consists of the functions whose poles are contained in D.
$L\left(D_{1}+D_{2}\right) \supseteq L\left(D_{1}\right) L\left(D_{2}\right)$ for any effective D_{1}, D_{2}.
Note: if $\mathcal{X}=\mathbb{P}^{1}$, then $L(d \infty)=\{$ polynomials of degree $\leq d\}$.

Dimension of Riemann-Roch Spaces

Fact: $L(D)$ is a finite-dimensional \mathbb{k}-vector space.
What is its dimension?

- If $\operatorname{deg} D<0$, then $D+\operatorname{div}(f)$ can never be effective
$\Longrightarrow \operatorname{dim} L(D)=0$.
- $L(0)=\mathbb{k}$ (functions with no poles are constant), so $\operatorname{dim} L(0)=1$.
- More generally, $L(D)=$?

The Riemann-Roch Theorem

The Riemann-Roch theorem tells us that for any D,

$$
\begin{aligned}
& \operatorname{dim} L(D)-\operatorname{dim} L(K-D)=\operatorname{deg} D-g+1 \\
& \text { Recall that } K \text { is (any) canonical divisor, and } \\
& L(K-D) \longleftrightarrow\left\{\omega \in \Omega^{1}(\mathcal{X}): \omega=0 \text { on } D\right\} .
\end{aligned}
$$

In particular, for large enough D, we have $L(K-D)=0$ and hence $\operatorname{dim} L(D)=\operatorname{deg} D-g+1$.

Weierstrass models of elliptic curves

Suppose \mathcal{E} is an abstract elliptic curve over \mathbb{k}, and let $\mathcal{O} \in \mathcal{E}(\mathbb{k})$.
We have $K=0$, so R-R gives $\operatorname{dim} L(D)=\operatorname{deg} D$ for effective D.

- $L(\mathcal{O})=\mathbb{k}=\langle 1\rangle$ (constants)
- $\operatorname{dim} L(2 \mathcal{O})=2 \Longrightarrow L(2 \mathcal{O})=\langle 1, x\rangle$ for some x
- $\operatorname{dim} L(3 \mathcal{O})=3 \Longrightarrow L(3 \mathcal{O})=\langle 1, x, y\rangle$ for some y
- $L(4 \mathcal{O})=\left\langle 1, x, x^{2}, y\right\rangle$
- $L(5 \mathcal{O})=\left\langle 1, x, x^{2}, y, x y\right\rangle$
- $L(6 \mathcal{O})=\left\langle 1, x, x^{2}, x^{3}, y, x y, y^{2}\right\rangle$, but $\operatorname{dim} L(6 \mathcal{O})=6$:
so must have a nontrivial linear relation between the 7 functions
\Longrightarrow Weierstrass equation $y^{2}+a_{1} x y+a_{3} y=a_{0} x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.
$L(3 \mathcal{O})$ gives us an embedding $\mathcal{E} \rightarrow \mathbb{P}^{2}=\mathbb{P}(L(3 \mathcal{O}))$
defined by $P \longmapsto(x(P): y(P): 1)$, mapping $\mathcal{O} \mapsto \infty=(0: 1: 0)$.

Application: canonical models for genus 2 curves

Suppose \mathcal{X} is a curve of genus 2 .

- We have $\operatorname{deg} K=2 g-2=2$, so $L(-n K)=0$ for $n>1$.
- Apply $\mathrm{R}-\mathrm{R}$ to $D=0 \Longrightarrow \operatorname{dim} L(K)=2$, so $L(K)=\langle 1, x\rangle$ for some x.
- Apply R-R to $D=n K, n>1$: $\operatorname{dim} L(n K)=2 n-1$ for $n>1$.
- $L(2 K) \supseteq\left\langle 1, x, x^{2}\right\rangle$ but $\operatorname{dim} L(2 K)=3$,
so $L(2 K)=\left\langle 1, x, x^{2}\right\rangle$.
- $L(3 K) \supseteq\left\langle 1, x, x^{2}, x^{3}\right\rangle$ but $\operatorname{dim} L(3 K)=5$, so $L(3 K)=\left\langle 1, x, x^{2}, x^{3}, y\right\rangle$ for some new y
- $\ldots L(4 K)=\left\langle 1, x, x^{2}, x^{3}, x^{4}, y, x y\right\rangle$
- $\ldots L(5 K)=\left\langle 1, x, x^{2}, x^{3}, x^{4}, x^{5}, y, x y, x^{2} y\right\rangle$

... Every genus 2 curve is hyperelliptic

Now $L(6 K) \supseteq\left\langle 1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, y, x y, x^{2} y, x^{3} y, y^{2}\right\rangle$,
but $\mathrm{R}-\mathrm{R}$ says $\operatorname{dim} L(6 K)=11$, so
there is a nontrivial \mathbb{k}-linear relation between the 12 functions:

$$
y^{2}+\sum_{i=0}^{3}\left(a_{i} x^{i} y\right)=\sum_{i=0}^{6} b_{i} x^{i} \quad \text { with the } a_{i}, b_{i} \in \mathbb{k}
$$

$\operatorname{char}(\mathbb{k}) \neq 2$: replace y with $y-\frac{1}{2} \sum_{i=0}^{3} a_{i} x^{i}$ to get $y^{2}=\sum_{i=0}^{6} f_{i} x^{i}$.
Now $P \mapsto(x(P), y(P))$ defines a map from \mathcal{X} into the plane; its image is the hyperelliptic curve

$$
\mathcal{X}: y^{2}=f(x)=\sum_{i=0}^{6} f_{i} x^{i}
$$

Hyperelliptic Jacobians

Benjamin Smith

Team GRACE
INRIA Saclay-Île-de-France
Laboratoire d'Informatique de l'École polytechnique (LIX)
smith@lix.polytechnique.fr
\section*{ECC Summer School 2015}

Hyperelliptic Jacobians

Suppose $\mathcal{X}: y^{2}=f(x)$ is hyperelliptic of genus $g>1$.
In what follows, we suppose f has odd degree, so \mathcal{X} has a single point ∞ at infinity.

Even degree case is (only) slightly more complicated.
Our mission: to define a compact (and algebraic) representation for $\operatorname{Pic}^{0}(\mathcal{X})$.

Reduced representatives for classes

$$
\text { If }[D] \text { is in } \operatorname{Pic}^{0}(\mathcal{X})
$$

then $[D]$ has a unique reduced representative:

$$
[D]=\left[P_{1}+\cdots+P_{r}-r \infty\right]
$$

for some $P_{1}, \ldots, P_{r} \in \mathcal{X}$ depending on $[D]$ (not D) such that

- $P_{i} \neq \infty$ and $P_{i} \neq \iota\left(P_{j}\right)$ for $i \neq j$ (semi-reducedness)
- $r \leq g$ (reducedness)
$[D] \in \operatorname{Pic}^{0}(\mathcal{X})(\mathbb{k}) \Longleftrightarrow P_{1}+\cdots+P_{r} \in \operatorname{Div}(\mathcal{X})(\mathbb{k})$
Note: the individual P_{i} need not be in $\mathcal{X}(\mathbb{k})$!

Why?

Because of Riemann-Roch (quelle surprise).
If $[D]$ is in $\operatorname{Pic}^{0}(\mathcal{X})$, then applying $\mathrm{R}-\mathrm{R}$ to $D+g \infty$ yields a function f such that

$$
D+g \infty+\operatorname{div}(f)=D^{\prime} \text { is effective; }
$$

$$
\text { so }\left[D^{\prime}-g \infty\right]=[D] \text { with } \operatorname{deg} D^{\prime}=g \text {. }
$$

$D^{\prime}-g \infty$ is almost a reduced representative: it remains to remove any $P+\iota(P)-2 \infty$ from D^{\prime}.

The Mumford representation

Suppose we have a class $[D]$ in $\operatorname{Pic}^{0}(\mathcal{X})(\mathbb{k})$, with reduced representative

$$
D=P_{1}+\cdots+P_{r}-r \infty \in \operatorname{Div}^{0}(\mathcal{X})(\mathbb{k}) .
$$

The Mumford representation of [D] is the (unique) pair of polynomials $\langle a(x), b(x)\rangle$ in $\mathbb{k}[x]$ such that

- $a(x)=\prod_{i=1}^{r}\left(x-x\left(P_{i}\right)\right)$, and
- $b\left(x\left(P_{i}\right)\right)=y\left(P_{i}\right)$ for $1 \leq i \leq r$;
so for each of the x-coordinates appearing as a root of a, b gives the corresponding y-coordinate.

If necessary, compute b by Lagrange interpolation.

The Mumford representation

If $\langle a(x), b(x)\rangle$ represents a class on $\mathcal{X}: y^{2}=f(x)$, then

- a is monic of degree $r \leq g$, and
- b satisfies $\operatorname{deg} b<r$ and $b^{2} \equiv f(\bmod a)$.

Theorem: Any pair $\langle a(x), b(x)\rangle$ in $\mathbb{k}[x]^{2}$ satisfying these conditions represents a divisor class in $\operatorname{Pic}^{0}(\mathcal{X})(\mathbb{k})$.
\Longrightarrow identify divisor classes with Mumford reps of their reduced representatives:
we simply write $[D]=\langle a, b\rangle$.
We associate $\langle a(x), b(x)\rangle$ with the ideal $(a(x), y-b(x))$.

Hyperelliptic Jacobians

We can collect the Mumford representations by degree $0 \leq d \leq g$:

$$
M_{d}:=\left\{\langle a, b\rangle: \operatorname{deg}(b)<\operatorname{deg}(a)=d, b^{2} \equiv f \quad(\bmod a)\right\} .
$$

We view the coefficients of $a(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ and $b(x)=b_{d-1} x^{d-1}+\cdots+b_{0}$ as coordinates on $\mathbb{A}^{2 d}$.
$b^{2}(\bmod a)$ and $f(\bmod a)$ are polynomials of degree $d-1$ in $\mathbb{k}\left[a_{i}, b_{i}\right][x]$; the vanishing of their coefficients defines d independent equations in the $2 d$ coordinates, cutting out M_{d} as a d-dimensional subvariety in $\mathbb{A}^{2 d}$.

Observe: M_{0} is a point; M_{1} is an affine copy of \mathcal{X}; and $\# M_{d}\left(\mathbb{F}_{q}\right)=O\left(q^{d}\right)$ for $0 \leq d \leq g$.

The Jacobian

Glueing together M_{0}, \ldots, M_{g}, we give $\operatorname{Pic}^{0}(\mathcal{X})$ the structure of a g-dimensional algebraic variety $\mathcal{J}_{\mathcal{X}}$, called the Jacobian.

$$
\begin{gathered}
\text { Over } \mathbb{F}_{q} \text {, we have } \# \mathcal{J X}_{X}=O\left(q^{g}\right) . \\
\text { (more precision later) }
\end{gathered}
$$

We want an expression of the group law on $\mathcal{J}_{\mathcal{X}}$ in terms of its coordinates;
Cantor's algorithm does this using an explicit form of (guess what?) Riemann-Roch (quelle surprise!).

Cantor's algorithm: addition on $\mathcal{J} x$

Input: Reduced divisors $D_{1}=\left\langle a_{1}, b_{1}\right\rangle$ and $D_{2}=\left\langle a_{2}, b_{2}\right\rangle$ on \mathcal{X}. Output: A reduced $D_{3}=\left\langle a_{3}, b_{3}\right\rangle$ s.t. $\left[D_{3}\right]=\left[D_{1}+D_{2}\right]$ in $\operatorname{Pic}^{0}(\mathcal{X})$.
(1) $\left(d, u_{1}, u_{2}, u_{3}\right):=\operatorname{XGCD}\left(a_{1}, a_{2}, b_{1}+b_{2}\right)$

$$
/ /\left(\operatorname{so} d=\operatorname{gcd}\left(a_{1}, a_{2}, b_{1}+b_{2}\right)=u_{1} a_{1}+u_{2} a_{2}+u_{3}\left(b_{1}+b_{2}\right)\right) .
$$

(2) Set $a_{3}:=a_{1} a_{2} / d^{2}$;
(3) Set $b_{3}:=b_{1}+\left(u_{1} a_{1}\left(b_{2}-b_{1}\right)+u_{3}\left(f-b_{1}^{2}\right)\right) / d\left(\bmod a_{3}\right)$;
(9) If $\operatorname{deg} a_{3} \leq g$ then go to Step 9;
(3) Set $\tilde{a}_{3}:=a_{3}$ and $\tilde{b}_{3}:=b_{3}$;
(6) Set $a_{3}:=\left(f-b_{3}^{2}\right) / a_{3}$;
(1) Let $\left(Q, b_{3}\right):=$ Quotrem $\left(-b_{3}, a_{3}\right)$;
(8) While deg $a_{3}>g$

$$
\begin{aligned}
& \text { 8a Set } t:=\tilde{a}_{3}+Q\left(b_{3}-\tilde{b}_{3}\right) ; \\
& \text { 8b Set } \tilde{b}_{3}:=b_{3}, \tilde{a}_{3}=a_{3} \text {, and } a_{3}:=t ; \\
& \text { 8c Let }\left(Q, b_{3}\right):=\text { Quotrem }\left(-b_{3}, a_{3}\right) ;
\end{aligned}
$$

(9) Return $\left\langle a_{3}, b_{3}\right\rangle$.

How does Cantor reduction work?

Suppose we want to add the Mumford/reduced representatives

$$
\begin{aligned}
& \left\langle a_{1}, b_{1}\right\rangle \longleftrightarrow D_{1}=\sum_{i=1}^{r} P_{i}-r \infty \\
& \left\langle a_{2}, b_{2}\right\rangle \longleftrightarrow D_{2}=\sum_{i=1}^{s} Q_{i}-s \infty
\end{aligned}
$$

- Step 1: $d\left(x\left(P_{i}\right)\right)=0$ iff $P_{i}=\iota\left(Q_{j}\right)$ for some j
- Steps 2, 3: sum D_{1} and D_{2}, remove contribution of d \longrightarrow pre-reduced D_{3} such that $\left[D_{3}\right]=\left[D_{1}+D_{2}\right]$
- Loop: reduces degree of the representative until reduced.
- Exercise: how many steps until the result is reduced?

Cryptographic questions

We've seen that hyperelliptic curves of genus g over \mathbb{F}_{q} yield algebraic groups with $O\left(q^{g}\right)$ elements and a conveniently computable group law.

- How can we compute $\# \mathcal{J} \mathcal{X}\left(\mathbb{F}_{q}\right)$?
- How hard is the DLP in $\mathcal{J} \mathcal{X}\left(\mathbb{F}_{q}\right)$?
- How can we construct strong and fast Jacobians?
- How efficient are hyperelliptic cryptosystems, and how do they compare with elliptic cryptosystems?
- Do hyperelliptic curves have destructive applications?

Facts about Jacobians

What are the analogues of the elliptic curve group structure theorems for $\mathcal{J X}_{\mathcal{X}}$?

- $\mathcal{J} \mathcal{X}\left[\ell^{n}\right](\overline{\mathbb{k}}) \cong\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{2 g}$ for $\ell \neq \operatorname{char}(\mathbb{k})$
- $\mathcal{J} \mathcal{X}\left[p^{n}\right](\overline{\mathbb{k}}) \cong\left(\mathbb{Z} / p^{n}\right)^{r}$ for some $0 \leq r \leq g$ (p-rank r is independent of n)
- $\mathcal{J} \mathcal{X}\left(\mathbb{F}_{q}\right) \cong \prod_{i=1}^{2 g}\left(\mathbb{Z} / n_{i} \mathbb{Z}\right)$ with each $n_{i+1} \mid n_{i}$

Facts about Jacobians

We have $\# \mathcal{J}_{\mathcal{X}}\left(\mathbb{F}_{q}\right)=\chi_{\pi}(1)$, where

$$
\begin{aligned}
\chi_{\pi}(T)=T^{2 g} & +a_{1} T^{2 g-1}+\cdots+a_{g} T^{g} \\
& +q a_{g-1} T^{g-1}+\cdots+q^{g-1} a_{1} T+q^{g}
\end{aligned}
$$

is the characteristic polynomial of Frobenius.
Weil bounds: $(\sqrt{q}-1)^{2 g} \leq \# \mathcal{J X}\left(\mathbb{F}_{q}\right) \leq(\sqrt{q}+1)^{2 g}$
Generically, $\operatorname{End}(\mathcal{J} x)$ is an order in a CM-field of degree $2 g$ (a totally imaginary extension of a totally real field of degree g)

Moduli space $\mathcal{H}_{g}(j$-invariant analogue) is $(2 g-1)$-dimensional
$\Longrightarrow O\left(q^{2 g-1}\right)$ non-isomorphic \mathcal{X} of genus g over \mathbb{F}_{q}

Point counting on Jacobians

How do we compute $\# \mathcal{J} \mathcal{X}\left(\mathbb{F}_{q}\right)$, where $q=p^{n}$? Ultimate goal: polynomial time in $\log p, n$, and g.

- Generic group order methods (eg. BSGS): $\widetilde{O}\left(q^{g / 2}\right)$ Sutherland's algorithms: faster but still exponential Easy to implement, impossible to run on big inputs
- Small p: Kedlaya's algorithm $\widetilde{O}\left(p g^{4} n^{3}\right)$ —polynomial in g and n, but exponential in $\log p$. (Uses MW cohomology on p-adic differentials) Harvey's improvements: $\widetilde{O}\left(p^{1 / 2} g^{4} n^{3}\right)$

Point counting on Jacobians: large p

For large p : Pila's generalization of Schoof's algorithm.

- In theory: exponential in g, polynomial in $\log p$ and n
- In practice: never implemented for $g \geq 3$:
- General genus 2 over $\mathbb{F}_{p}: \widetilde{O}\left(\log ^{8} p\right)$. Crushingly slow.
- Gaudry-Schost 2008 record: one CPU-month per 127-bit curve
- For comparison, equivalent elliptic curve $<10 \mathrm{CPU}$-seconds
- Special genus 2 over $\mathbb{F}_{p}: \widetilde{O}\left(\log ^{5} p\right)$.
- (2-param. families with efficiently computable "real" endomorphisms)
- Gaudry-Kohel-S.: three CPU-hours per 128-bit curve
- With early abort: practical generation of industrial-sized random cryptographic curves
- Gaudry-Kohel-S. record: 80 CPU-days per 512-bit curve

Embeddings of Jacobians

The Mumford representation lets us compute with a hyperelliptic Jacobian by dividing it up into affine pieces:

$$
\mathcal{J}_{\mathcal{X}}=M_{0} \cup M_{1} \cup \cdots \cup M_{g} .
$$

In fact, \mathcal{J} X is projective (it's an abelian variety) -so what are its projective embeddings?

This is a nontrivial question

$$
\mathcal{J X}_{\mathcal{X}}=M_{0} \cup M_{1} \cup \cdots \cup M_{g} \quad \text { with each } M_{i} \subset \mathbb{A}^{2 i}
$$

recalls the usual decomposition $\mathbb{P}^{n}=\mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \cdots \cup \mathbb{A}^{n}$ -but it's not the same thing at all!

As cryptographers, we're used to thinking of projective coordinates as nothing more than convenient denominator elimination, which we carry out by homogenization.

But if you just homogenize Mumford representations, then you get something totally wrong.

The Jacobi intersection model

To create projective embeddings of curves, we used divisors and Riemann-Roch.

For example: given a point \mathcal{O} on an elliptic \mathcal{E}, we embedded \mathcal{E} in $\mathbb{P}^{2}=\mathbb{P}(L(3 \mathcal{O}))=\mathbb{P}(\langle x, y, 1\rangle)$.

Alternative embeddings: for example, use $D=4 \mathcal{O}$.

- $L(4 \mathcal{O})=\langle x, y, u, v\rangle$ (because $\operatorname{dim} L(4 \mathcal{O})=\operatorname{deg}(4 \mathcal{O})=4)$;
- $L(8 \mathcal{O}) \supseteq L(4 \mathcal{O})^{2}=\left\langle x^{2}, x y, x u, x v, y^{2}, y u, y v, u^{2}, u v, v^{2}\right\rangle$
- but $\operatorname{dim} L(8 \mathcal{O})=8 \Longrightarrow 2$ quadratic relations in x, y, u, v.
- \Longrightarrow the Jacobi intersection model of \mathcal{E} :

$$
\mathcal{E}: F_{2}(x, y, u, v)=G_{2}(x, y, u, v)=0 \quad \subset \mathbb{P}^{3}=\mathbb{P}(L(4 \mathcal{O}))
$$

Theta

So, if \mathcal{E} is an elliptic curve and \mathcal{O} is a point on \mathcal{E}, then:

- $L(3 \mathcal{O})$ embeds \mathcal{E} in \mathbb{P}^{2} with one cubic equation;
- $L(4 \mathcal{O})$ embeds \mathcal{E} in \mathbb{P}^{3} with two quadratic equations. What are the hyperelliptic analogues?
We need a divisor on $\mathcal{J}_{\mathcal{X}}$ to take the place of \mathcal{O} on \mathcal{E} :

$$
\Theta:=\left\{\left[P_{1}+\cdots+P_{g-1}-(g-1) \infty\right]: P_{1}, \ldots, P_{g-1} \in \mathcal{X}(\overline{\mathbb{k}})\right\}
$$

(Note: $\Theta=M_{0} \cup \cdots \cup M_{g-1}$).

Projective embeddings of $\mathcal{J} \mathcal{X}$

$$
\Theta:=\left\{\left[P_{1}+\cdots+P_{g-1}-(g-1) \infty\right]: P_{i} \in \mathcal{X}(\overline{\mathbb{k}})\right\}
$$

We have $\operatorname{dim} L(n \Theta)=n^{g}$, so

- $L(3 \Theta)$ embeds $\mathcal{J}_{\mathcal{X}}$ in $\mathbb{P}^{3^{6}-1}$
- $L(4 \Theta)$ embeds \mathcal{J}_{X} in $\mathbb{P}^{48}-1$.

The dimension of the space is exponential in g (and so is the number of equations!)

Generally, \mathcal{J} X does not embed in a smaller projective space than $\mathbb{P}^{3^{8}-1}$!

Projective embeddings of $\mathcal{J} \mathcal{X}$ for $g=2$

For $g=2: \mathcal{J}_{\mathcal{X}}$ is a surface, Θ is a copy of \mathcal{X} inside \mathcal{J}.

- $L(3 \Theta)$ gives the "Grant" embedding in \mathbb{P}^{8} with 10 quadratic and 3 cubic equations.
- $L(4 \Theta)$ gives the "Flynn" embedding in \mathbb{P}^{15} with 72 quadratic equations.
- $\mathcal{J X}_{X}$ never embeds in \mathbb{P}^{3}.
- $\mathcal{J}_{\mathcal{X}}$ embeds in \mathbb{P}^{4} if and only if $\operatorname{End}\left(\mathcal{J}_{x}\right)$ contains $\mathbb{Z}[(1+\sqrt{5}) / 2]$ (!! ...Horrocks-Mumford, etc.)

The future of Jacobian arithmetic

Mumford representations are convenient, but Cantor's algorithm does not have a uniform execution path \Longrightarrow vulnerable to simple side-channel attacks.

The existing (smooth) projective embeddings are fine for one-off computations and experiments, but they are totally unsuitable for cryptographic applications.

Deriving convenient, compact models with efficient and uniform group laws is a serious open problem.

Get involved (and tell us about it at ECC next year)!

The DLP in hyperelliptic Jacobians

What about the DLP in hyperelliptic Jacobians?

$$
\text { We have } N=\# \mathcal{J} \mathcal{X}\left(\mathbb{F}_{q}\right)=O\left(q^{g}\right)
$$

Cryptographic contexts: N is prime (or almost). Gold standard: $\widetilde{O}(\sqrt{N})=\widetilde{O}\left(q^{g / 2}\right)$ operations in $\mathcal{J}\left(\mathbb{F}_{q}\right)$ (Pollard/BSGS generic group methods).
If the DLP is easier than this, then we are better off using an elliptic curve over \mathbb{F}_{p} with $p \sim q^{g}$.

(Oversimplified) Index Calculus

Suppose we want to solve a DLP $D_{1}=[m] D_{2}$ in a cyclic group $\mathcal{G} \cong \mathbb{Z} / N \mathbb{Z}$.

- Choose a distinguished subset $\mathcal{F} \subset \mathcal{G}$, called a factor base.
- Set up a matrix M over $\mathbb{Z} / N \mathbb{Z}$ with a column for each element F_{j} of the factor base \mathcal{F}.
- Generate random combinations $\left[a_{i}\right] D_{1} \oplus\left[b_{i}\right] D_{2}$, and test each one for smoothness: if $\left[a_{i}\right] D_{1} \oplus\left[b_{i}\right] D_{2}=\bigoplus_{j}\left[n_{j}\right] F_{j}$, then add a row $\left(n_{j}\right)$ to M.
- Once M has more rows than columns, solve to find a kernel vector $\left(x_{i}\right)$ (such that $\left(x_{i}\right) M=0$).
- Then $\bigoplus_{i}\left[x_{i} a_{i}\right] D_{1} \oplus \bigoplus_{i}\left[x_{i} b_{i}\right] D_{2}=0$, so $m=-\left(\sum_{i} x_{i} b_{i}\right) /\left(\sum_{i} x_{i} a_{i}\right)(\bmod N)$.

Hyperelliptic Index Calculus

For basic hyperelliptic index calculus: the factor base

$$
\begin{gathered}
\mathcal{F}:=M_{1}\left(\mathbb{F}_{q}\right)=\left\{\langle x-\alpha, \beta\rangle: \beta^{2}=f(\alpha)\right\} \\
\text { has } O(q) \text { elements. }
\end{gathered}
$$

To generate \mathcal{F} : iterate over α in \mathbb{F}_{q}, keep $\langle x-\alpha, \sqrt{f(\alpha)}\rangle$ where the square root is in \mathbb{F}_{q}.

$$
\begin{aligned}
& {[D]=\langle a, b\rangle \in \mathcal{J X}_{\mathcal{X}}\left(\mathbb{F}_{q}\right) \text { is smooth }} \\
& \text { if a splits completely over } \mathbb{F}_{q}
\end{aligned}
$$

(smoothness testing $=$ polynomial factorization)
Expect: $1 / g$! divisor classes are smooth
$\Longrightarrow O(g!q)$ divisors to be tested

Index Calculus Complexity (in \mathbb{F}_{q}-ops)

Group ops in $\mathcal{J}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ (via Cantor) cost $O\left(g^{2} \log ^{2} q\right)$ Degree- g poly factorizations $/ \mathbb{F}_{q}$ cost $O\left(g^{2} \log ^{3} q\right)$

Need $O(q)$ relations; each costs $O\left(g!\left(g^{2} \log ^{2} q+g^{2} \log ^{3} q\right)\right)$ to acquire.
Sparse linear algebra (eg. Lanczos): $O\left(g q^{2}\right)(g \log q)$
Total: $O\left(\left(g^{2} \log ^{3} q\right) g!q+\left(g^{2} \log q\right) q^{2}\right)$,
$=\tilde{O}\left(q^{2}\right)$ for fixed g as $q \rightarrow \infty$

Small g: index calculus improvements

Harley: use only a small fraction of \mathcal{F}. \Longrightarrow cost drops from $\widetilde{O}\left(q^{2}\right)$ to $\widetilde{O}\left(q^{2 g /(g+1)}\right)$.

Thériault: single large prime variant

$$
\Longrightarrow \tilde{O}\left(q^{2-4 /(2 g+1)}\right)
$$

Gaudry-Thomé-Thériault-Diem: double large prime variant $\Longrightarrow \tilde{O}\left(q^{2-2 / g}\right)$

$$
\text { Genus } \rightarrow \infty \text { and } q \rightarrow \infty:
$$

$$
\Longrightarrow L_{q^{\varepsilon}}(1 / 2, \sqrt{2})
$$

(But let's be serious: $g \ll \infty$)

Bad news for genus ≥ 3

Observe: $\widetilde{O}\left(q^{2-2 / g}\right)$ is easier than $\widetilde{O}\left(q^{g / 2}\right)$ for $g>2$.
We can do even better in genus 3 (S., Eurocrypt08): use an explicit isogeny to move the DLP into the Jacobian of a non-hyperelliptic genus 3 curve (a smooth plane quartic), where Diem's plane curve index calculus solves the DLP in $\widetilde{O}(q)$ group operations.

How many bits for a given security level?

Suppose we want b bits of security
(ie, the attacker must use $\sim 2^{b}$ operations to solve the DLP).

Curve	$\log q$	element size	$\# \mathcal{J}\left(\mathbb{F}_{q}\right)$
Elliptic	$\sim 2 b$	$\sim 2 b$	$\sim 2 b$
Genus 2	$\sim b$	$\sim 2 b$	$\sim 2 b$
Genus 3	$\sim b$	$\sim 3 b$	$\sim 3 b$
Genus $g \geq 4$	$\sim \frac{g}{2 g-2} b$	$\sim \frac{g^{2}}{2 g-2} b$	$\sim \frac{g^{2}}{2 g-2} b$

- Efficiency is already suboptimal for $g=3$: genus 3 cryptosystems require 50% more space than elliptic or genus 2 systems at the same security level.
- Higher genus: even worse!
- \Longrightarrow Moral: for constructive work, stick to genus 1 and 2 .

Restriction of scalars

Suppose \mathcal{E} is defined over an extension field $\mathbb{F}_{q^{n}}, n>1$. \mathcal{E} is a one-dimensional object over a degree- n field.

Weil descent is a direct tradeoff of dimension vs degree.
Think of the complex numbers:
We can see \mathbb{C} as the line (one-dimensional) over a quadratic extension $\mathbb{R}(\sqrt{-1})$, but we can also visualise it as the real plane \mathbb{R}^{2}.

In the same way: the one-dimensional vector space $\mathbb{F}_{q^{n}}$ is isomorphic to the n-dimensional vector space \mathbb{F}_{q}^{n}.

Weil descent

The Weil restriction \mathcal{W} of \mathcal{E} is an n-dimensional algebraic group over $\mathbb{F}_{q}\left(\operatorname{not} \mathbb{F}_{q^{n}}\right)$ whose $\mathbb{F}_{q^{-}}$points correspond to $\mathbb{F}_{q^{n-}}$ points of \mathcal{E}.

The Weil restriction always exists, and doesn't weaken \mathcal{E} in itself.

But if we're lucky,

we might be able to transform all (or part) of \mathcal{W} into the Jacobian of a higher-genus curve, which we can attack using index calculus.

Weil descent of an elliptic curve

Let's try $n=3$, with $q=2^{e}$ for some e and $\mathbb{F}_{q^{3}}=\mathbb{F}_{q}[\theta] /\left(\theta^{3}+\theta+1\right)$.

$$
\mathbb{F}_{q^{3}}=\left\langle\psi_{0}=1, \psi_{1}=\theta^{2}, \psi_{2}=\theta^{4}\right\rangle_{\mathbb{F}_{q}}
$$

Any elliptic curve over $\mathbb{F}_{q^{3}}$ is \cong to one in the form

$$
\mathcal{E} / \mathbb{F}_{q^{3}}: y^{2}+x y=x^{3}+\left(b_{0} \psi_{0}+b_{1} \psi_{1}+b_{2} \psi_{2}\right) .
$$

Equations for Weil restriction \mathcal{W} : substitute

$$
x=x_{0} \psi_{0}+x_{1} \psi_{1}+x_{2} \psi_{2}, \quad y=y_{0} \psi_{0}+y_{1} \psi_{1}+y_{2} \psi_{2},
$$

get 3 equations over \mathbb{F}_{q} by collecting coefficients of the ψ_{i}.

Explicit Weil restrictions

So: Weil restriction \mathcal{W} of $\mathcal{E}: y^{2}+x y=x^{3}+\left(b_{0} \psi_{0}+b_{1} \psi_{1}+b_{2} \psi_{2}\right)$ is defined in $\left(x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right)$-space by the three equations

$$
\begin{gathered}
x_{0}^{3}+x_{0}^{2} x_{2}+x_{0} x_{1}^{2}+x_{0} y_{1}+x_{0} y_{2}+x_{1}^{3}+x_{1} x_{2}^{2}+x_{1} y_{0}+x_{1} y_{2}+x_{2}^{3}+x_{2} y_{0}+x_{2} y_{1} \\
x_{0}^{3}+x_{0}^{2} x_{1}+x_{0} x_{1}^{2}+x_{0} y_{1}+x_{0} y_{2}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1} y_{0}+x_{1} y_{1}+x_{2}^{3}+x_{2} y_{0}+x_{2} y_{2}+y_{1}^{2}+y_{2}^{2}+b_{2}+b_{0} \\
x_{0}^{2} x_{1}+x_{0}^{2} x_{2}+x_{0} x_{1}^{2}+x_{0} x_{2}^{2}+x_{0} y_{0}+x_{0} y_{2}+x_{1}^{3}+x_{1} y_{1}+x_{1} y_{2}+x_{2}^{3}+x_{2} y_{0}+x_{2} y_{1}+y_{0}^{2}+y_{1}^{2}+b_{2}+b_{1}
\end{gathered}
$$

To get a curve in \mathcal{W}, intersect with (say) $x_{0}=u, x_{1}=u, x_{2}=u$:

$$
\mathcal{C}:\left(y_{2}^{2}+u y_{0}=u^{3}+b_{0}, y_{0}^{2}+u y_{1}=u^{3}+b_{1}, y_{1}^{2}+u y_{2}=u^{3}+b_{2}\right)
$$

Irreducible unless $b_{0}=b_{1}=b_{2}\left(\right.$ so $\left.\beta \in \mathbb{F}_{q}\right)$. Eliminate y_{1}, y_{2}, put $v=y_{0}$:

$$
\mathcal{C}: v^{8}+u^{7} v+u^{12}+u^{10}+u^{9}+b_{0} u^{6}+b_{2}^{2} u^{4}+b_{1}^{4} .
$$

It may not be obvious, but \mathcal{C} is hyperelliptic of genus 3 . Desingularize $\widetilde{\mathcal{C}} \rightarrow \mathcal{C} \Longrightarrow$ explicit isogeny $\Phi: \mathcal{W} \rightarrow \operatorname{Jac}(\widetilde{\mathcal{C}})$.

Discrete logarithms on the Weil restriction

Start with a DLP instance in $\mathcal{E}\left(\mathbb{F}_{q^{3}}\right)$:
$Q=\left(x^{Q}, y^{Q}\right)=[m]\left(x^{P}, y^{P}\right)=[m] P$
Weil-restricting, we get a DLP instance in $\mathcal{W}\left(\mathbb{F}_{q}\right)$:
$\left(x_{0}^{Q}, x_{1}^{Q}, x_{2}^{Q}, y_{0}^{Q}, y_{1}^{Q}, y_{2}^{Q}\right)=[m]\left(x_{0}^{P}, x_{1}^{P}, x_{2}^{P}, y_{0}^{P}, y_{1}^{P}, y_{2}^{P}\right)$; map through Φ to get a DLP instance in $\operatorname{Jac}(\mathcal{C})$:

$$
\left[\sum_{i=1}^{3}\left(u_{i}^{Q}, v_{i}^{Q}\right)-D_{0}\right]=m\left[\sum_{i=1}^{3}\left(u_{i}^{P}, v_{i}^{P}\right)-D_{0}\right]
$$

Solve DLP instance using index calculus in $\mathcal{J}_{\widetilde{c}}$ in time $\widetilde{O}\left(q^{4 / 3}\right)$: beats $\widetilde{O}\left(q^{3 / 2}\right)$ using generic algorithms in $\mathcal{E}\left(\mathbb{F}_{q^{3}}\right)$.

Gaudry-Hess-Smart

In more generality:
Theorem (Gaudry-Hess-Smart, 2000)
Let $n \geq 4$ be fixed. Write $q=2^{e}$. Then as $e \rightarrow \infty$, we can solve the DLP in $\mathcal{E}\left(\mathbb{F}_{q^{n}}\right)$ for a significant proportion of all elliptic curves $\mathcal{E} / \mathbb{F}_{q^{n}}$ in time $O\left(q^{2+\epsilon}\right)$.

For comparison: generic attacks require time $\widetilde{O}\left(q^{n / 2}\right)$.
Reading guide:
http://www.cs.bris.ac.uk/~nigel/weil_descent.html

