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Luke Valenta, Benjamin VanderSloot, Eric Wustrow,

Santiago Zanella-Béguelin, Paul Zimmermann
weakdh.org

September 28, 2015

weakdh.org


Textbook Diffie-Hellman
[Diffie Hellman 1976]

Public Parameters

G a group (here F∗
p)

g group generator

Key Exchange

ga

gb

gabgab



Warm-up: Elementary discrete log algorithms

Pollard rho, baby step giant step

I O(
√
q) for (sub)group of order q.

Pollard lambda

I O(
√
r) for exponent in size range r .

Pohlig-Hellman

1. Factor group order q =
∏

i q
ei
i .

2. Solve discrete log in each subgroup in time ei
√
qi .

3. Use Chinese remainder theorem to reconstruct log modq.

Best practice: g should generate large prime-order subgroup mod
p. Common choices include “safe” primes p = 2q + 1 or DSA
groups.
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Pop quiz

Do people deploying cryptography follow best practice?



Warm-up: Diffie-Hellman deployment in practice

Performed Internet-wide scan of HTTPS

I 23.9% of 14.3M HTTPS servers support Diffie-Hellman

I Observed 70,000 distinct primes p

I Found 4,800 groups (p, g) where (p − 1)/2 was not prime.

I Applied ECM to opportunistically factor (p − 1)/2.

I Learned prime factors of order of g for 750 groups, used in
40,000 connections across our Internet scans.

For random p, p − 1 likely to have large factors, so might not
recover full discrete log.
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Warm-up: Short exponents with composite group orders
[van Oorschot, Wiener]

I Some implementations use short exponents `: 128, 160 bits.

I If ` <
∏

i q
ei
i for qeii | ordp(g), Pohlig-Hellman over only these

subgroups reconstructs ` by Chinese remainder theorem.

I Using this attack we computed secret exponent for 159
exchanges and partial information in 460 exchanges.
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Subexponential algorithms for prime fields: Index calculus

Goal: Solve g ` ≡ t mod p.

Definition: An integer is B-smooth if all its prime factors are ≤ B.
Fix some a priori bound B.

1. Relation finding: Enumerate pairs of B-smooth integers
equivalent mod p.

pa111 . . .Ba1k = 1 ≡ p + 1 = pr111 pr122 . . .B r1k

pa211 . . .Ba2k = 2 ≡ p + 2 = pr211 pr222 . . .B r2k

...

pak11 . . .Bakk = z ≡ p + z = prk11 prk22 . . .B rkk
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Index calculus: Linear algebra

Take log of both sides. Assume subgroup of order q. Then

a11 log p1 + · · ·+ a1k logB ≡ r11 log p1 + · · ·+ r1k logB mod q

a21 log p1 + · · ·+ a2k logB ≡ r21 log p1 + · · ·+ r2k logB mod q

...

ak1 log p1 + · · ·+ akk logB ≡ rk1 log p1 + · · ·+ rkk logB mod q

Also get some relations for free: log−1 = (p − 1)/2 etc.

2. Linear Algebra: Solve system of equations for log pi :

log p1 ≡ s1
...

log pk ≡ sk



Index calculus: Actually computing individual logs

Input target t.

3. Try to find some B-smooth value

gRt = pe11 . . .BeB

Then using known values of log pi write

log t = −R + e1 log p1 + · · ·+ eB logB mod q



Index calculus: Running time

1. Relation collection Runtime depends on (1) work to test if
integer is B-smooth, (2) probability integer is B-smooth, (3)
B.

2. Linear algebra Runtime depends on cost of sparse linear
algebra for B-dimensional matrix mod q.

3. Individual log Runtime depends on probability that gRt is
B-smoooth.

Optimizing for B gives runtime of

exp((
√

2 + o(1))
√

log p log log p) = Lp(1/2,
√

2)



Number field sieve
[Gordon], [Joux, Lercier], [Semaev]

1. Polynomial selection: Find a polynomial f and an integer m
such that f (m) ≡ 0 mod p, deg f = 5 or 6, coeffs of f
relatively small. Defines a number field Q(x)/f (x).

For γ =
∑

i aiα
i in ring of integers, define homomorphism

ϕ(γ) =
∑

i aim
i to Z/pZ.

2. Relation collection Collect relations of form

p1
a11 . . .Ba1k = a + bα ≡ a + bm = pr111 . . .B r1k

3. Linear algebra Once there are enough relations, solve for
log pi .

4. Individual log “Descent” Try to write target t as sum of logs
in known database.



Implementing the NFS with CADO-NFS

p

polynomial
selection

sieving linear
algebra

log db

precomputation

t, g descent

`

individual log

L(1/3, 1.923) L(1/3, 1.232)

Sieving Linear Algebra Descent

I logB core-years rows core-years core-time

RSA-512 14 29 0.5 4.3M 0.33
DH-512 15 27 2.5 2.1M 7.7 10 mins

Times for cluster computation:

polysel sieving linalg descent

2000-3000 cores 288 cores 36 cores

DH-512 3 hours 15 hours 120 hours 70 seconds
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TLS Diffie-Hellman Key Exchange
TLS = Transport Layer Security

hello, 28 byte client random, 4 byte time

list of cipher suites

hello, 28 byte server random, 4 byte time

certificate = public RSA key + CA signatures

chosen cipher suite, ga, SignRSAkey(ga)

gb

F(g ab,

randoms)

→ km, ke

F(g ab,

randoms)

→ km, ke

MACkm(dialog)

MACkm(dialog)

Encke (website contents)
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Authentication in TLS Diffie-Hellman Key Exchange

hello, 28 byte client random, 4 byte time

list of cipher suites
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Encryption in TLS Diffie-Hellman Key Exchange

hello, 28 byte client random, 4 byte time

list of cipher suites

hello, 28 byte server random, 4 byte time

certificate = public RSA key + CA signatures

chosen cipher suite, ga, SignRSAkey(ga)

gb
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Some differences between practice and theory

I Cipher-suite and parameter negotiation.

I Politics.

I ElGamal is uncommon.

I Group negotiation.

I Short exponents.

I Long-tailed distribution of group parameters.

I Primes with many bits in common.



Does anyone use 512-bit Diffie-Hellman?



International Traffic in Arms Regulations
April 1, 1992 version

Category XIII--Auxiliary Military Equipment ...

(b) Information Security Systems and equipment, cryptographic devices,

software, and components specifically designed or modified therefore,

including:

(1) Cryptographic (including key management) systems, equipment,

assemblies, modules, integrated circuits, components or software with the

capability of maintaining secrecy or confidentiality of information or

information systems, except cryptographic equipment and software as

follows:

(i) Restricted to decryption functions specifically designed to allow the

execution of copy protected software, provided the decryption functions

are not user-accessible.

(ii) Specially designed, developed or modified for use in machines for

banking or money transactions, and restricted to use only in such

transactions. Machines for banking or money transactions include automatic

teller machines, self-service statement printers, point of sale terminals

or equipment for the encryption of interbanking transactions.

...



Commerce Control List: Category 5 - Info. Security
(May 21, 2015 version)

a.1.a. A symmetric algorithm employing a key length

in excess of 56-bits; or

a.1.b. An asymmetric algorithm where the security of the

algorithm is based on any of the following:

a.1.b.1. Factorization of integers in excess of 512 bits (e.g., RSA);

a.1.b.2. Computation of discrete logarithms in a multiplicative

group of a finite field of size greater than 512 bits (e.g., Diffie-

Hellman over Z/pZ); or

a.1.b.3. Discrete logarithms in a group other than mentioned

in 5A002.a.1.b.2 in excess of 112 bits (e.g., Diffie-Hellman

over an elliptic curve);

a.2. Designed or modified to perform cryptanalytic functions;



Export cipher suites in TLS

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_Anon_EXPORT_WITH_RC4_40_MD5

TLS_DH_Anon_EXPORT_WITH_DES40_CBC_SHA

In March 2015, export cipher suites supported by 36.7% of the 14
million sites serving browser-trusted certificates!

FREAK attack [BDFKPSZZ 2015]: Use fast 512-bit factorization
to downgrade modern browsers to broken export-grade RSA.



Man-in-the-middle downgrade attack to export DH

Protocol flaw: Server does not sign chosen cipher suite.



Carrying out the downgrade attack

I In April 2015, 8.4% of Alexa Top 1M HTTPS domains
supported DHE EXPORT.

I 82% use most common prime. 10% use 2nd most common
prime.

I We carried out precomputation for these primes. ≈ 1 week
each on 2000-3000 cores.

I Individual descent times on 36-core machine:

30 60 90 120 150

0

0.5

1

Seconds

C
D
F
of

ke
y
s



Many hosts use the same group parameters.

What about passive attacks for 768 or 1024-bit keys?



Cost estimates for discrete log

Sieving Linear Algebra Descent

I logB core-years rows core-years core-time

RSA-512 14 29 0.5 4.3M 0.33 Timings with default CADO-NFS parameters.

DH-512 15 27 2.5 2.1M 7.7 10 mins For the computations in this paper; may be suboptimal.

RSA-768 16 37 800 250M 100 Est. based on [?] with less sieving.

DH-768 17 35 8,000 150M 28,500 2 days Est. based on [?, ?] and own experiments.

RSA-1024 18 42 1,000,000 8.7B 120,000 Est. based on complexity formula.

DH-1024 19 40 10,000,000 5.2B 35,000,000 30 days Est. based on complexity formula and our experiments.

I Use RSA-768 factoring record, adjust to sieve less and modern
processors.

I For discrete log, oversieve to decrease linear algebra cost.

I For descent, used early-abort ECM implementation to get
experimental timings.



Cost estimates for discrete log
Sieving Linear Algebra Descent

I logB core-years rows core-years core-time

RSA-512 14 29 0.5 4.3M 0.33 Timings with default CADO-NFS parameters.

DH-512 15 27 2.5 2.1M 7.7 10 mins For the computations in this paper; may be suboptimal.

RSA-768 16 37 800 250M 100 Est. based on [?] with less sieving.

DH-768 17 35 8,000 150M 28,500 2 days Est. based on [?, ?] and own experiments.

RSA-1024 18 42 1,000,000 8.7B 120,000 Est. based on complexity formula.

DH-1024 19 40 10,000,000 5.2B 35,000,000 30 days Est. based on complexity formula and our experiments.

I [Geiselmann Steinwandt] give ASIC sieving design. 10x their
estimates at modern sizes = $8M to sieve 1024-bit DL in one
year.

I Titan supercomputer = 300,000 cores → 117 years for linear
algebra.

I Assuming 80x speedup for ASIC linear algebra = hundreds of
millions of $.



James Bamford, 2012, Wired

According to another top official also involved with the program,
the NSA made an enormous breakthrough several years ago in its
ability to cryptanalyze, or break, unfathomably complex encryption
systems employed by not only governments around the world but
also many average computer users in the US. The upshot,
according to this official: “Everybody’s a target; everybody with
communication is a target.”
[...]
The breakthrough was enormous, says the former official, and soon
afterward the agency pulled the shade down tight on the project,
even within the intelligence community and Congress. “Only the
chairman and vice chairman and the two staff directors of each
intelligence committee were told about it,” he says. The reason?
“They were thinking that this computing breakthrough was going
to give them the ability to crack current public encryption.”



2013 NSA “Black Budget”

“Also, we are investing in groundbreaking cryptanalytic capabilities
to defeat adversarial cryptography and exploit internet traffic.”









IKE Key Exchange for VPNs/IPsec

list of pre-chosen groups

chooses group, ga

gb

PSK PSK
F (gab,PSK)F (gab,PSK)



NSA VPN Attack Orchestration



Vulnerable servers, if the attacker can precompute for . . .

all 512-bit p all 768-bit p one 1024-bit p ten 1024-bit p

HTTPS Top 1M MITM 45K (8.4%) 45K (8.4%) 205K (37.1%) 309K (56.1%)
HTTPS Top 1M 118 (0.0%) 407 (0.1%) 98.5K (17.9%) 132K (24.0%)
HTTPS Trusted MITM 489K (3.4%) 556K (3.9%) 1.84M (12.8%) 3.41M (23.8%)
HTTPS Trusted 1K (0.0%) 46.7K (0.3%) 939K (6.56%) 1.43M (10.0%)

IKEv1 IPv4 – 64K (2.6%) 1.69M (66.1%) 1.69M (66.1%)
IKEv2 IPv4 – 66K (5.8%) 726K (63.9%) 726K (63.9%)

SSH IPv4 – – 3.6M (25.7%) 3.6M (25.7%)



Practical Mitigations

I Move to elliptic curve cryptography
I How to reassure practitioners paranoid about fixed groups?

I If ECC isn’t an option, move to ≥ 2048-bit primes.

I If 2048-bit primes aren’t an option, generate a fresh 1024-bit
prime.

I Major browsers have stopped accepting 512-bit groups, will
sunset 768 and 1024-bit soon.

weakdh.org

weakdh.org

