PARI/GP PROGRAMMING: POLLARD RHO ALGORITHM

BILL ALLOMBERT AND KARIM BELABAS

A text version of the list of commands to enter is available at http://ecc2015.math.u-bordeaux.fr/documents/ecc_rho.txt

1. Pollard rho

The exercise is to implement a simple version of Pollard rho to solve the discrete logarithm problem on elliptic curves. Let E be an elliptic curve, P and Q to points, we want to find e such that $P=e Q$, assuming it exists. The idea is to find a point that can be written in two ways as a linear combination of P and Q :

$$
\begin{align*}
& X=a_{1} P+b_{1} Q \tag{1}\\
& X=a_{2} P+b_{2} Q \tag{2}
\end{align*}
$$

and to solve the system modulo the order of Q. To find such collision, we use Floyd algorithm.

We need four ingredients:
1.1. A "random" function. We need a function rnd that take a point on E and return either 0,1 or 2 , which hopefully behave like a random function. (Use a.pol to get a representative of the field element a in $\mathbb{Z}[X]$).
1.2. The ρ function. We need a function rho that take $[X, a, b]$ such that $X=a P+b Q$, compute $\mathrm{h}=\mathrm{rnd}(\mathrm{X})$ and return:

- if $h=0$, return $[X+P, a+1, b]$
- if $h=1$, return $[X+Q, a, b+1]$
- if $h=2$, return $[2 X, 2 a, 2 b]$
(The new triple still satisfies $X=a P+b Q$)
1.3. The Floyd algorithm. The idea is to compute two sequences of points X_{n} and $Y_{n}=X_{2 n}$ by recursion, such that $X_{0}=P$ and $X_{n+1}=\rho\left(X_{n}\right)$, until we find n such that $X_{n}=X_{2 n}$, while keeping track of a_{n} and b_{n} such that $X_{n}=a_{n} P+b_{n} Q$.
1.4. The discrete logarithm. Assuming $a_{n} \neq a_{2 n}$, we can solve

$$
\begin{equation*}
a_{n} P+b_{n} Q=a_{2 n} P+b_{2 n} Q \tag{4}
\end{equation*}
$$

to find e
1.5. Improvement. We can also stop if $X_{n}=-X_{2 n}$ and solve a slightly different equation.
2. Solution

2.1. a random function.

```
rnd(P)=subst(P[1].pol,variable(P[1].pol),2)%3;
```


2.2. the rho function.

```
rho(E,P,Q,V)=
{
        my(X,a,b,h);
        [X,a,b] = V;
        h = rnd(X);
        if (h==0,[elladd(E,X,P),a+1,b],
            h==1,[elladd(E,X,Q),a,b+1],
            [ellmul(E,X,2),2*a,2*b]);
}
```


2.3. The Floyd algorithm.

```
floyd(E,P,Q)=
{
    my(X1,X2);
    X1=[P,1,0]; X2=[P,1,0];
    until(X1[1]==X2[1],
        X1=rho(E,P,Q,X1);
        X2=rho(E,P,Q,rho(E,P,Q,X2)));
    [X1,X2];
}
```


2.4. The discrete logarithm.

```
dlog(E,P,Q,o)=
{
    my(X1,X2);
    [X1,X2]=floyd (E,P,Q);
    -(X1[3]-X2[3])/(X1[2]-X2 [2])%०;
}
```

```
2.5. Tests.
test (N)=
{
    p =randomprime(N); a =ffgen(p);
    until(isprime(ellcard(E)), E = ellinit([1,random(p)],a));
    Q = ellgenerators(E)[1];
    o = ellgroup(E)[1];
    e = random(ellcard(E));
    P = ellmul(E,Q,e);
}
test(2^35);
dlog(E,P,Q,o)
##
elllog(E,P,Q,o)
##
```

