ECC Summer School, Bordeaux, France — September 23–25, 2015

Software and Hardware Implementation of Elliptic Curve Cryptography

Jérémie Detrey

CARAMEL team, LORIA INRIA Nancy - Grand Est, France Jeremie.Detrey@loria.fr

Context: Elliptic curves

▶ Let us consider a finite field \mathbb{F}_q and an elliptic curve E/\mathbb{F}_q

e.g., $E: y^2 = x^3 + Ax + B$, with parameters $A, B \in \mathbb{F}_q$ and $char(\mathbb{F}_q) \neq 2, 3$

Context: Elliptic curves

▶ Let us consider a finite field \mathbb{F}_q and an elliptic curve E/\mathbb{F}_q

e.g., $E: y^2 = x^3 + Ax + B$, with parameters $A, B \in \mathbb{F}_q$ and $char(\mathbb{F}_q) \neq 2, 3$

▶ The set of \mathbb{F}_q -rational points of *E* is defined as

 $E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q \mid (x, y) \text{ satisfy } E\} \cup \{\mathcal{O}\}$

Context: Elliptic curves

▶ Let us consider a finite field \mathbb{F}_q and an elliptic curve E/\mathbb{F}_q

e.g., $E: y^2 = x^3 + Ax + B$, with parameters $A, B \in \mathbb{F}_q$ and $char(\mathbb{F}_q) \neq 2, 3$

▶ The set of \mathbb{F}_{q} -rational points of *E* is defined as

 $E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q \mid (x, y) \text{ satisfy } E\} \cup \{\mathcal{O}\}$

• Additive group law: $E(\mathbb{F}_q)$ is an abelian group

- addition via the "chord and tangent" method
- \mathcal{O} is the neutral element

[See D. Robert's lectures]

- $E(\mathbb{F}_q)$ is a finite abelian group:
 - let \mathbb{G} be a cyclic subgroup of $E(\mathbb{F}_q)$
 - let $\ell = \#\mathbb{G}$ the order of \mathbb{G} and $P \in \mathbb{G}$ a generator of \mathbb{G}

- $E(\mathbb{F}_q)$ is a finite abelian group:
 - let G be a cyclic subgroup of $E(\mathbb{F}_q)$
 - let $\ell = \#\mathbb{G}$ the order of \mathbb{G} and $P \in \mathbb{G}$ a generator of \mathbb{G}

 $\mathbb{G} = \langle P \rangle = \{ \mathcal{O}, P, 2P, 3P, \dots, (\ell-1)P \}$

- $E(\mathbb{F}_q)$ is a finite abelian group:
 - let G be a cyclic subgroup of $E(\mathbb{F}_q)$
 - let $\ell = \#\mathbb{G}$ the order of \mathbb{G} and $P \in \mathbb{G}$ a generator of \mathbb{G}

 $\mathbb{G} = \langle P \rangle = \{ \mathcal{O}, P, 2P, 3P, \dots, (\ell - 1)P \}$

▶ The scalar multiplication in base *P* gives an isomorphism between $\mathbb{Z}/\ell\mathbb{Z}$ and \mathbb{G} :

$$\exp_{P} : \mathbb{Z}/\ell\mathbb{Z} \longrightarrow \mathbb{G}$$

$$k \longmapsto kP = \underbrace{P+P+\ldots+P}_{k \text{ times}}$$

- $E(\mathbb{F}_q)$ is a finite abelian group:
 - let G be a cyclic subgroup of $E(\mathbb{F}_q)$
 - let $\ell = \#\mathbb{G}$ the order of \mathbb{G} and $P \in \mathbb{G}$ a generator of \mathbb{G}

 $\mathbb{G} = \langle P \rangle = \{ \mathcal{O}, P, 2P, 3P, \dots, (\ell - 1)P \}$

▶ The scalar multiplication in base *P* gives an isomorphism between $\mathbb{Z}/\ell\mathbb{Z}$ and G:

$$\exp_P : \mathbb{Z}/\ell\mathbb{Z} \longrightarrow \mathbb{G}$$

$$k \longmapsto kP = \underbrace{P+P+\ldots+P}_{k \text{ times}}$$

▶ The inverse map is the so-called discrete logarithm (in base *P*):

$$\begin{array}{rcl} \operatorname{dlog}_P = \exp_P^{-1} & : & \mathbb{G} & \longrightarrow & \mathbb{Z}/\ell\mathbb{Z} \\ & & Q & \longmapsto & {\color{black}{k}} \end{array} & \text{ such that } Q = {\color{black}{k}P} \end{array}$$

Scalar multiplication can be computed in polynomial time:

Scalar multiplication can be computed in polynomial time:

Scalar multiplication can be computed in polynomial time:

Under a few conditions, discrete logarithm can only be computed in exponential time (as far as we know):

Scalar multiplication can be computed in polynomial time:

Under a few conditions, discrete logarithm can only be computed in exponential time (as far as we know):

Scalar multiplication can be computed in polynomial time:

Under a few conditions, discrete logarithm can only be computed in exponential time (as far as we know):

[See E. Thomé's lectures, and S. Galbraith's and M. Kosters' talks]

Scalar multiplication can be computed in polynomial time:

Under a few conditions, discrete logarithm can only be computed in exponential time (as far as we know):

[See E. Thomé's lectures, and S. Galbraith's and M. Kosters' talks]

► That's a one-way function

Scalar multiplication can be computed in polynomial time:

Under a few conditions, discrete logarithm can only be computed in exponential time (as far as we know):

[See E. Thomé's lectures, and S. Galbraith's and M. Kosters' talks]

► That's a one-way function ⇒ Public-key cryptography!

Scalar multiplication can be computed in polynomial time:

Under a few conditions, discrete logarithm can only be computed in exponential time (as far as we know):

[See E. Thomé's lectures, and S. Galbraith's and M. Kosters' talks]

► That's a one-way function ⇒ Public-key cryptography!

- private key: an integer k in $\mathbb{Z}/\ell\mathbb{Z}$
- public key: the point kP in $\mathbb{G} \subseteq E(\mathbb{F}_q)$

Alice and Bob want to establish a secure communication channel

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (1 double scalar mult)

Elliptic curve Diffie–Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (1 double scalar mult)

▶ etc.

Elliptic curve Diffie–Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (1 double scalar mult)

▶ etc.

 Other important operations might be required, such as pairings [See J. Krämer's talk]

► Many possible meanings for efficiency:

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? → low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?
 - protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?
 - protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]
 - curve attacks? (weak curves, twist security, etc.)

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?
 - protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]
 - curve attacks? (weak curves, twist security, etc.)
 - timing attacks? [See P. Schwabe's talk]

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]
- curve attacks? (weak curves, twist security, etc.)
- timing attacks? [See P. Schwabe's talk]
- fault attacks? [See J. Krämer's talk]

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]
- curve attacks? (weak curves, twist security, etc.)
- timing attacks? [See P. Schwabe's talk]
- fault attacks? [See J. Krämer's talk]
- cache attacks?

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]
- curve attacks? (weak curves, twist security, etc.)
- timing attacks? [See P. Schwabe's talk]
- fault attacks? [See J. Krämer's talk]
- cache attacks?
- branch-prediction attacks?

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]
- curve attacks? (weak curves, twist security, etc.)
- timing attacks? [See P. Schwabe's talk]
- fault attacks? [See J. Krämer's talk]
- cache attacks?
- branch-prediction attacks?
- power or electromagnetic analysis?

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger's talk]
- curve attacks? (weak curves, twist security, etc.)
- timing attacks? [See P. Schwabe's talk]
- fault attacks? [See J. Krämer's talk]
- cache attacks?
- branch-prediction attacks?
- power or electromagnetic analysis?
- etc.
- \Rightarrow Possible attack scenarios depend on the application

- on desktop PCs and laptops
 - ightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)
- on smart cards and RFID chips
 - \rightarrow custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for cryptographic operations

Cryptography should be available everywhere:

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)
- on smart cards and RFID chips

 \rightarrow custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for cryptographic operations

- ▶ Other possible target platforms, mostly for cryptanalytic computations:
 - clusters of CPUs
 - GPUs (graphics processors)
 - FPGAs (reconfigurable circuits)

Cryptography should be available everywhere:

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)
- on smart cards and RFID chips

 \rightarrow custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for cryptographic operations

- ▶ Other possible target platforms, mostly for cryptanalytic computations:
 - clusters of CPUs
 - GPUs (graphics processors)
 - FPGAs (reconfigurable circuits)
 - \Rightarrow In such cases, implementation security is usually less critical

► A complete ECC implementation relies on many layers:

► A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)

► A complete ECC implementation relies on many layers:

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic primitives (ECDH, ECDSA, etc.)

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)
 - native integer arithmetic (CPU instruction set)

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)
 - native integer arithmetic (CPU instruction set)
 - logic circuits (registers, multiplexers, adders, etc.)

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)
 - native integer arithmetic (CPU instruction set)
 - logic circuits (registers, multiplexers, adders, etc.)
 - logic gates (NOT, NAND, etc.) and wires

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)
 - native integer arithmetic (CPU instruction set)
 - logic circuits (registers, multiplexers, adders, etc.)
 - logic gates (NOT, NAND, etc.) and wires
 - transistors

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)
 - native integer arithmetic (CPU instruction set)
 - logic circuits (registers, multiplexers, adders, etc.)
 - logic gates (NOT, NAND, etc.) and wires
 - transistors
- When designing a cryptoprocessor, the hardware/software partitioning can be tailored to the application's requirements

Implementation layers

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)
 - native integer arithmetic (CPU instruction set)
 - logic circuits (registers, multiplexers, adders, etc.)
 - logic gates (NOT, NAND, etc.) and wires
 - transistors
- When designing a cryptoprocessor, the hardware/software partitioning can be tailored to the application's requirements
- All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if poorly implemented!
 - \Rightarrow ECC is no more secure than its weakest link

Implementation layers

- ► A complete ECC implementation relies on many layers:
 - protocol (OpenPGP, TLS, SSH, etc.)
 - cryptographic primitives (ECDH, ECDSA, etc.)
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)
 - native integer arithmetic (CPU instruction set)
 - logic circuits (registers, multiplexers, adders, etc.)
 - logic gates (NOT, NAND, etc.) and wires
 - transistors
- When designing a cryptoprocessor, the hardware/software partitioning can be tailored to the application's requirements
- All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if poorly implemented!
 - \Rightarrow ECC is no more secure than its weakest link
- ▶ In these lectures, we will mostly focus on the green layers

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
- at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
- at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
- at the curve arithmetic level: PARI, Sage (not for crypto!)

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
- at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
- at the curve arithmetic level: PARI, Sage (not for crypto!)
- at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
- at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
- at the curve arithmetic level: PARI, Sage (not for crypto!)
- at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

Available open-source hardware implementations of ECC:

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
- at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
- at the curve arithmetic level: PARI, Sage (not for crypto!)
- at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.
- ► Available open-source hardware implementations of ECC:
 - implementation of NaCl's crypto_box [Ask P. Schwabe about it]

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
- at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
- at the curve arithmetic level: PARI, Sage (not for crypto!)
- at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

Available open-source hardware implementations of ECC:

- implementation of NaCl's crypto_box [Ask P. Schwabe about it]
- PAVOIS project (announced) [See A. Tisserand's talk]

Some references

Elliptic Curves in Cryptography,

Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. London Mathematical Society 265, Cambridge University Press, 1999.

Advances in Elliptic Curves Cryptography,

Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart (editors). London Mathematical Society 317, Cambridge University Press, 2005.

Mathematics of Public-Key Cryptography,

Steven D. Galbraith. Cambridge University Press, 2012.

Some references

Guide to Elliptic Curve Cryptography,

Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Springer, 2004.

Handbook of Elliptic and Hyperelliptic Curve Cryptography, Henri Cohen and Gerhard Frey (editors). Chapman & Hall / CRC, 2005.

Proceedings of the CHES workshop and of other crypto conferences.

Outline

- I. Scalar multiplication
- II. Elliptic curve arithmetic
- III. Finite field arithmetic
- IV. Software considerations
- V. Notions of hardware design

Outline

I. Scalar multiplication

- II. Elliptic curve arithmetic
- III. Finite field arithmetic
- IV. Software considerations
- V. Notions of hardware design

Scalar multiplication

▶ Given k in $\mathbb{Z}/\ell\mathbb{Z}$ and P in $\mathbb{G} \subseteq E(\mathbb{F}_q)$, we want to compute

$$kP = \underbrace{P + P + \ldots + P}_{k \text{ times}}$$

Scalar multiplication

▶ Given k in $\mathbb{Z}/\ell\mathbb{Z}$ and P in $\mathbb{G} \subseteq E(\mathbb{F}_q)$, we want to compute

$$kP = \underbrace{P + P + \ldots + P}_{k \text{ times}}$$

Size of ℓ (and k) for crypto applications: between 250 and 500 bits

Scalar multiplication

▶ Given k in $\mathbb{Z}/\ell\mathbb{Z}$ and P in $\mathbb{G} \subseteq E(\mathbb{F}_q)$, we want to compute

$$kP = \underbrace{P + P + \ldots + P}_{k \text{ times}}$$

Size of ℓ (and k) for crypto applications: between 250 and 500 bits

▶ Repeated addition, in O(k) complexity, is out of the question!

• Available operations on $E(\mathbb{F}_q)$:

- point addition: $(Q, R) \mapsto Q + R$
- point doubling: $Q \mapsto 2Q = Q + Q$

- Available operations on $E(\mathbb{F}_q)$:
 - point addition: $(Q, R) \mapsto Q + R$
 - point doubling: $Q \mapsto 2Q = Q + Q$
- \blacktriangleright Idea: iterative algorithm based on the binary expansion of k

- Available operations on $E(\mathbb{F}_q)$:
 - point addition: $(Q, R) \mapsto Q + R$
 - point doubling: $Q \mapsto 2Q = Q + Q$
- \blacktriangleright Idea: iterative algorithm based on the binary expansion of k
 - start from the most significant bit of k
 - double current result at each step
 - add P if the corresponding bit of k is 1

- Available operations on $E(\mathbb{F}_q)$:
 - point addition: $(Q, R) \mapsto Q + R$
 - point doubling: $Q \mapsto 2Q = Q + Q$
- \blacktriangleright Idea: iterative algorithm based on the binary expansion of k
 - start from the most significant bit of k
 - double current result at each step
 - add P if the corresponding bit of k is 1
 - same principle as binary exponentiation

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

T =

 $= \mathcal{O}$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (\underline{1}10101111)_2$

T = P

= P

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = P \cdot 2 = 2P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = P \cdot 2 + P = 3P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = (P \cdot 2 + P) \cdot 2 = 6P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = (P \cdot 2 + P) \cdot 2^2 = 12P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (11010111)_2$

 $T = (P \cdot 2 + P) \cdot 2^2 + P = 13P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = ((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2 = 26P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = ((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 = 52P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = ((P \cdot 2 + P) \cdot 2^{2} + P) \cdot 2^{2} + P = 53P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(*k*, *P*): $T \leftarrow \mathcal{O}$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = (((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2$ = 106P

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101\underline{1}11)_2$

 $T = (((P \cdot 2 + P) \cdot 2^{2} + P) \cdot 2^{2} + P) \cdot 2 + P = 107P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101111)_2$

 $T = ((((P \cdot 2 + P) \cdot 2^{2} + P) \cdot 2^{2} + P) \cdot 2 + P) \cdot 2 = 214P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (1101011\underline{1}1)_2$

 $T = ((((P \cdot 2 + P) \cdot 2^{2} + P) \cdot 2^{2} + P) \cdot 2 + P) \cdot 2 + P) = 215P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (11010111\underline{1})_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 = 430P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (11010111\underline{1})_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 + P = 431P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101111)_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 + P = 431P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101111)_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 + P = 431P$

• Complexity in $O(n) = O(\log_2 \ell)$ operations over $E(\mathbb{F}_q)$:

- n doublings, and
- n/2 additions on average

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: k = 431

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = \mathcal{O}$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (\underline{110} \ 101 \ 111)_2 = (\underline{6}57)_{2^3}$

$$T = 6P = 6P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110 \underline{101} 111)_2 = (6\underline{57})_{2^3}$

$$T = 6P \cdot 2^3 = 48P$$

▶ Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions

• Example with w = 3: $k = 431 = (110 \ \underline{101} \ 111)_2 = (6 \ \underline{57})_{2^3}$

$$T = 6P \cdot 2^3 + 5P = 53P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ \underline{111})_2 = (65\underline{7})_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 = 424P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ \underline{111})_2 = (65\underline{7})_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

▶ Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

► Complexity:

- n doublings, and
- $(1-2^{-w})n/w$ additions on average

• Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

Complexity:

- n doublings, and
- $(1-2^{-w})n/w$ additions on average

Select w carefully so that precomputation cost does not become predominant

• Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

Complexity:

- n doublings, and
- $(1-2^{-w})n/w$ additions on average

Select w carefully so that precomputation cost does not become predominant

Sliding window variant: half as many precomputations

▶ Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\bar{3}, \bar{1}, 0, 1, 3\}$): k = 431

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions

• Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (3003000\overline{1})_2$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (3003000\overline{1})_2$

T = O

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\bar{3}, \bar{1}, 0, 1, 3\}$): $k = 431 = (\underline{3}003000\bar{1})_2$

T = 3P = 3P

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (3003000\overline{1})_2$

 $T = 3P \cdot 2 = 6P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\bar{3}, \bar{1}, 0, 1, 3\}$): $k = 431 = (3003000\bar{1})_2$

 $T = 3P \cdot 2^2 = 12P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (300\underline{3}000\overline{1})_2$

 $T = 3P \cdot 2^3 = 24P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} − 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\bar{3}, \bar{1}, 0, 1, 3\}$): $k = 431 = (300\underline{3}000\overline{1})_2$

 $T = 3P \cdot 2^3 + 3P = 27P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (300300\overline{1})_2$

 $T = (3P \cdot 2^3 + 3P) \cdot 2 = 54P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\bar{3}, \bar{1}, 0, 1, 3\}$): $k = 431 = (30030001)_2$

 $T = (3P \cdot 2^3 + 3P) \cdot 2^2 = 108P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\bar{3}, \bar{1}, 0, 1, 3\}$): $k = 431 = (3003000\bar{1})_2$

 $T = (3P \cdot 2^3 + 3P) \cdot 2^3 = 216P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (3003000\overline{1})_2$

 $T = (3P \cdot 2^3 + 3P) \cdot 2^4 = 432P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (3003000\overline{1})_2$

 $T = (3P \cdot 2^3 + 3P) \cdot 2^4 - P = 431P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (3003000\overline{1})_2$

 $T = (3P \cdot 2^3 + 3P) \cdot 2^4 - P = 431P$

- Fact: computing the opposite of a point on $E(\mathbb{F}_q)$ has a negligible cost
- \blacktriangleright Idea: use signed digits to represent scalar k with minimal Hamming weight
- ▶ 2^w-ary non-adjacent form (w-NAF): use odd digits {-2^{w-1} + 1,..., 2^{w-1} 1} and 0 to represent k so that at most every w-th digit is non-zero
- Precompute 3P, 5P, ..., $(2^{w-1}-1)P$:
 - 1 doubling, and
 - $2^{w-2} 1$ additions
- Example with w = 3 (digits in $\{\overline{3}, \overline{1}, 0, 1, 3\}$): $k = 431 = (3003000\overline{1})_2$

 $T = (3P \cdot 2^3 + 3P) \cdot 2^4 - P = 431P$

► Complexity:

- *n* doublings, and
- n/(w+1) additions on average

► To compute the sum of several scalar multiplications

e.g., aP + bQ, where $a, b \in \mathbb{Z}/\ell\mathbb{Z}$ and $P, Q \in E(\mathbb{F}_q)$

▶ To compute the sum of several scalar multiplications

e.g., aP + bQ, where $a, b \in \mathbb{Z}/\ell\mathbb{Z}$ and $P, Q \in E(\mathbb{F}_q)$

Idea:

- compute and accumulate all scalar multiplications simultaneously
- share doubling steps between multiplications

```
function double-scalar-mult(a, P, b, Q):

S \leftarrow P + Q

T \leftarrow O

for i \leftarrow n - 1 downto 0:

T \leftarrow 2T

if a_i = 1 and b_i = 1:

T \leftarrow T + S

else if a_i = 1:

T \leftarrow T + P

else if b_i = 1:

T \leftarrow T + Q

return T
```

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$ return T

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$ return T

► Example: *a* = 21 and *b* = 30

function double-scalar-mult(*a*, *P*, *b*, *Q*):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

► Example: a = 21 = (10101)₂ and b = 30 = (11110)₂

function double-scalar-mult(*a*, *P*, *b*, *Q*):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

```
    Example: a = 21 = (10101)<sub>2</sub>
and b = 30 = (11110)<sub>2</sub>
    T =
```

 (\mathcal{O})

=

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (\underline{1}0101)_2$ and $b = 30 = (\underline{1}1110)_2$ T = P + Q

= P + Q

function double-scalar-mult(*a*, *P*, *b*, *Q*):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (10101)_2$ and $b = 30 = (1110)_2$ $T = (P + Q) \cdot 2$

= 2P + 2Q

function double-scalar-mult(*a*, *P*, *b*, *Q*):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (1010)_2$ and $b = 30 = (1110)_2$ $T = (P+Q) \cdot 2 + Q = 2P + 3Q$

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

function double-scalar-mult(*a*, *P*, *b*, *Q*):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (10\underline{1}01)_2$ and $b = 30 = (11\underline{1}10)_2$ $T = ((P+Q) \cdot 2 + Q) \cdot 2$

= 4P + 6Q

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (10\underline{1}01)_2$ and $b = 30 = (11\underline{1}10)_2$ $T = ((P+Q) \cdot 2 + Q) \cdot 2 + P + Q = 5P + 7Q$

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (10101)_2$ and $b = 30 = (11110)_2$ $T = (((P+Q) \cdot 2 + Q) \cdot 2 + P + Q) \cdot 2 = 10P + 14Q$

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (10101)_2$ and $b = 30 = (11110)_2$ $T = (((P+Q) \cdot 2 + Q) \cdot 2 + P + Q) \cdot 2 + Q = 10P + 15Q$

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (1010\underline{1})_2$ and $b = 30 = (1111\underline{0})_2$ $T = ((((P+Q) \cdot 2 + Q) \cdot 2 + P + Q) \cdot 2 + Q) \cdot 2 = 20P + 30Q$

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (1010\underline{1})_2$ and $b = 30 = (1111\underline{0})_2$ $T = ((((P+Q) \cdot 2 + Q) \cdot 2 + P + Q) \cdot 2 + Q) \cdot 2 + P = 21P + 30Q$

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

• Example: $a = 21 = (10101)_2$ and $b = 30 = (11110)_2$ $T = ((((P+Q) \cdot 2 + Q) \cdot 2 + P + Q) \cdot 2 + Q) \cdot 2 + P = 21P + 30Q$

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow \mathcal{O}$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

return T

 Example: a = 21 = (10101)₂ and b = 30 = (11110)₂ T = ((((P+Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P = 21P + 30Q
 Complexity:

- *n* doublings, and
- 3n/4 additions on average

function double-scalar-mult(a, P, b, Q):

 $S \leftarrow P + Q$ $T \leftarrow O$ for $i \leftarrow n - 1$ downto 0: $T \leftarrow 2T$ if $a_i = 1$ and $b_i = 1$: $T \leftarrow T + S$ else if $a_i = 1$: $T \leftarrow T + P$ else if $b_i = 1$: $T \leftarrow T + Q$

• Example: $a = 21 = (10101)_2$ and $b = 30 = (11110)_2$

 $T = ((((P+Q) \cdot 2 + Q) \cdot 2 + P + Q) \cdot 2 + Q) \cdot 2 + P = 21P + 30Q$

- ► Complexity:
 - *n* doublings, and
 - 3n/4 additions on average
- ► With signed digits:
 - joint sparse form (JSF): n/2 additions
 - interleaved w-NAF: 2n/(w+1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

▶ Proposed by Gallant, Lambert, and Vanstone in 2000:

- ▶ Proposed by Gallant, Lambert, and Vanstone in 2000:
 - take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm

- ▶ Proposed by Gallant, Lambert, and Vanstone in 2000:
 - take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm
 - the characteristic polynomial of ψ is of the form $\chi_{\psi}(T) = T^2 t_{\psi}T + n_{\psi}$

Proposed by Gallant, Lambert, and Vanstone in 2000:

- take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm
- the characteristic polynomial of ψ is of the form $\chi_{\psi}(T) = T^2 t_{\psi}T + n_{\psi}$
- there exists a root $\lambda \in \mathbb{Z}/\ell\mathbb{Z}$ of $\chi_{\psi}(\mathcal{T}) \mod \ell$ such that

 $\psi(P) = \lambda P$, for any $P \in \mathbb{G}$

▶ Proposed by Gallant, Lambert, and Vanstone in 2000:

- take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm
- the characteristic polynomial of ψ is of the form $\chi_{\psi}(T) = T^2 t_{\psi}T + n_{\psi}$
- there exists a root $\lambda \in \mathbb{Z}/\ell\mathbb{Z}$ of $\chi_{\psi}(\mathcal{T}) \mod \ell$ such that

 $\psi(P) = \lambda P$, for any $P \in \mathbb{G}$

 $\Rightarrow \lambda$ -adic decomposition of scalar k as $k \equiv k_0 + \lambda k_1 \pmod{\ell}$ so that

$$kP = k_0P + k_1\psi(P)$$

 \Rightarrow compute $k_0P + k_1\psi(P)$ via multi-exponentiation

Proposed by Gallant, Lambert, and Vanstone in 2000:

- take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm
- the characteristic polynomial of ψ is of the form $\chi_{\psi}(T) = T^2 t_{\psi}T + n_{\psi}$
- there exists a root $\lambda \in \mathbb{Z}/\ell\mathbb{Z}$ of $\chi_{\psi}(\mathcal{T}) \mod \ell$ such that

 $\psi(P) = \lambda P$, for any $P \in \mathbb{G}$

 $\Rightarrow \lambda$ -adic decomposition of scalar k as $k \equiv k_0 + \lambda k_1 \pmod{\ell}$ so that

$$kP = k_0P + k_1\psi(P)$$

 \Rightarrow compute $k_0P + k_1\psi(P)$ via multi-exponentiation

Example:

▶ Proposed by Gallant, Lambert, and Vanstone in 2000:

- take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm
- the characteristic polynomial of ψ is of the form $\chi_{\psi}(T) = T^2 t_{\psi}T + n_{\psi}$
- there exists a root $\lambda \in \mathbb{Z}/\ell\mathbb{Z}$ of $\chi_{\psi}(T) \mod \ell$ such that

 $\psi(P) = \lambda P$, for any $P \in \mathbb{G}$

 $\Rightarrow \lambda$ -adic decomposition of scalar k as $k \equiv k_0 + \lambda k_1 \pmod{\ell}$ so that

$$kP = k_0P + k_1\psi(P)$$

 \Rightarrow compute $k_0 P + k_1 \psi(P)$ via multi-exponentiation

► Example:

• let $p \equiv 1 \pmod{4}$ and E/\mathbb{F}_p : $y^2 = x^3 + Ax$

Proposed by Gallant, Lambert, and Vanstone in 2000:

- take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm
- the characteristic polynomial of ψ is of the form $\chi_{\psi}(T) = T^2 t_{\psi}T + n_{\psi}$
- there exists a root $\lambda \in \mathbb{Z}/\ell\mathbb{Z}$ of $\chi_{\psi}(T) \mod \ell$ such that

 $\psi(P) = \lambda P$, for any $P \in \mathbb{G}$

 $\Rightarrow \lambda$ -adic decomposition of scalar k as $k \equiv k_0 + \lambda k_1 \pmod{\ell}$ so that

$$kP = k_0P + k_1\psi(P)$$

 \Rightarrow compute $k_0 P + k_1 \psi(P)$ via multi-exponentiation

Example:

- let $p \equiv 1 \pmod{4}$ and E/\mathbb{F}_p : $y^2 = x^3 + Ax$
- let $\xi \in \mathbb{F}_p$ a primitive 4-th root of unity (i.e., $\xi^2 = -1$ and $\xi^4 = 1$)

Proposed by Gallant, Lambert, and Vanstone in 2000:

- take an ordinary elliptic curve with a known efficiently computable endomorphism ψ of small norm
- the characteristic polynomial of ψ is of the form $\chi_{\psi}(T) = T^2 t_{\psi}T + n_{\psi}$
- there exists a root $\lambda \in \mathbb{Z}/\ell\mathbb{Z}$ of $\chi_{\psi}(T) \mod \ell$ such that

 $\psi(P) = \lambda P$, for any $P \in \mathbb{G}$

 $\Rightarrow \lambda$ -adic decomposition of scalar k as $k \equiv k_0 + \lambda k_1 \pmod{\ell}$ so that

$$kP = k_0P + k_1\psi(P)$$

 \Rightarrow compute $k_0 P + k_1 \psi(P)$ via multi-exponentiation

► Example:

- let $p \equiv 1 \pmod{4}$ and $E/\mathbb{F}_p: y^2 = x^3 + Ax$
- let $\xi \in \mathbb{F}_p$ a primitive 4-th root of unity (i.e., $\xi^2 = -1$ and $\xi^4 = 1$)
- then $\psi : (x, y) \mapsto (-x, \xi y)$ is an endomorphism of *E* and, since

$$\psi^2(x,y) = (x,-y) = -(x,y),$$

its characteristic polynomial is $\chi_\psi(\mathcal{T}) = \mathcal{T}^2 + 1$ and $\lambda = \pm \sqrt{-1} \mod \ell$

• Computation of k_0 and k_1 :

• Computation of k_0 and k_1 :

• pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ

- Computation of k_0 and k_1 :
 - pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
 - A is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)

• Computation of k_0 and k_1 :

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

• Computation of k_0 and k_1 :

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$egin{aligned} &k\equiv k-(ilde{k}_0+ ilde{k}_1\lambda) & (\mathrm{mod}\,\,\ell)\ &\equiv (k- ilde{k}_0)+(- ilde{k}_1)\lambda & (\mathrm{mod}\,\,\ell) \end{aligned}$$

• Computation of k_0 and k_1 :

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell} \ \equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

• take $k_0 = (k - ilde{k}_0) mod \ell$ and $k_1 = - ilde{k}_1 mod \ell$

• Computation of k_0 and k_1 :

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell} \ \equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

• take $k_0 = (k - ilde{k}_0) mod \ell$ and $k_1 = - ilde{k}_1 mod \ell$

 \Rightarrow k_0 and k_1 of size \approx n/2 bits

• Computation of k_0 and k_1 :

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell} \\ \equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

• take $k_0 = (k - \tilde{k}_0) \mod \ell$ and $k_1 = -\tilde{k}_1 \mod \ell$

 \Rightarrow k_0 and k_1 of size \approx n/2 bits

▶ Previous example with p = 953 and E/\mathbb{F}_p : $y^2 = x^3 + 5x$:

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell} \\ \equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

- take $k_0 = (k \tilde{k}_0) \mod \ell$ and $k_1 = -\tilde{k}_1 \mod \ell$ $\Rightarrow k_0$ and k_1 of size $\approx n/2$ bits
- ▶ Previous example with p = 953 and E/\mathbb{F}_p : $y^2 = x^3 + 5x$:
 - as $\#E(\mathbb{F}_p) = 2 \cdot 449$, we take $\ell = 449$

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell}$$

$$\equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

- take $k_0 = (k \tilde{k}_0) \mod \ell$ and $k_1 = -\tilde{k}_1 \mod \ell$ $\Rightarrow k_0$ and k_1 of size $\approx n/2$ bits
- ▶ Previous example with p = 953 and E/\mathbb{F}_p : $y^2 = x^3 + 5x$:
 - as $\#E(\mathbb{F}_p) = 2 \cdot 449$, we take $\ell = 449$
 - let $\xi = 442$ and check that $\xi^2 \equiv -1 \pmod{p}$

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell}$$

$$\equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

- take $k_0 = (k \tilde{k}_0) \mod \ell$ and $k_1 = -\tilde{k}_1 \mod \ell$ $\Rightarrow k_0$ and k_1 of size $\approx n/2$ bits
- ▶ Previous example with p = 953 and E/\mathbb{F}_p : $y^2 = x^3 + 5x$:
 - as $\#E(\mathbb{F}_p) = 2 \cdot 449$, we take $\ell = 449$
 - let $\xi = 442$ and check that $\xi^2 \equiv -1 \pmod{p}$
 - $\psi: (x, y) \mapsto (-x, \xi y)$: we have $\psi(P) = \lambda P$ for all $P \in \mathbb{G}$, with $\lambda = 382$

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell}$$

$$\equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

- take $k_0 = (k \tilde{k}_0) \mod \ell$ and $k_1 = -\tilde{k}_1 \mod \ell$ $\Rightarrow k_0$ and k_1 of size $\approx n/2$ bits
- ▶ Previous example with p = 953 and E/\mathbb{F}_p : $y^2 = x^3 + 5x$:
 - as $\#E(\mathbb{F}_p) = 2.449$, we take $\ell = 449$
 - let $\xi = 442$ and check that $\xi^2 \equiv -1 \pmod{p}$
 - $\psi: (x, y) \mapsto (-x, \xi y)$: we have $\psi(P) = \lambda P$ for all $P \in \mathbb{G}$, with $\lambda = 382$
 - scalar k = 431 can be rewritten as $k \equiv 2 + 7\lambda \pmod{\ell}$, whence

$$kP = 2P + 7\psi(P)$$

- pairs $(a, b) \in \mathbb{Z}^2$ such that $a + b\lambda \equiv 0 \pmod{\ell}$ form a 2-dimensional lattice Λ
- Λ is generated by $(\ell, 0)$ and $(-\lambda, 1) \rightarrow$ precompute short basis (EEA)
- given k, find lattice point $(\tilde{k}_0, \tilde{k}_1) \in \Lambda$ closest to (k, 0)

$$k \equiv k - (\tilde{k}_0 + \tilde{k}_1 \lambda) \pmod{\ell}$$

$$\equiv (k - \tilde{k}_0) + (-\tilde{k}_1)\lambda \pmod{\ell}$$

- take $k_0 = (k \tilde{k}_0) \mod \ell$ and $k_1 = -\tilde{k}_1 \mod \ell$ $\Rightarrow k_0$ and k_1 of size $\approx n/2$ bits
- ▶ Previous example with p = 953 and E/\mathbb{F}_p : $y^2 = x^3 + 5x$:
 - as $\#E(\mathbb{F}_p) = 2 \cdot 449$, we take $\ell = 449$
 - let $\xi = 442$ and check that $\xi^2 \equiv -1 \pmod{p}$
 - $\psi: (x, y) \mapsto (-x, \xi y)$: we have $\psi(P) = \lambda P$ for all $P \in \mathbb{G}$, with $\lambda = 382$
 - scalar k = 431 can be rewritten as $k \equiv 2 + 7\lambda \pmod{\ell}$, whence

$$kP = 2P + 7\psi(P)$$

- Popular constructions exploiting endomorphism ring:
 - GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible curves
 - Koblitz curves: binary curves, with Frobenius map $\psi : (x, y) \mapsto (x^2, y^2)$

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$

- careful timing analysis will reveal Hamming weight of secret k
- power analysis will leak bits of k

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$

- careful timing analysis will reveal Hamming weight of secret k
- power analysis will leak bits of k

▶ Back to the double-and-add algorithm:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ else: $Z \leftarrow T + P$ return T

▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$

- careful timing analysis will reveal Hamming weight of secret k
- power analysis will leak bits of k

Use double-and-add-always algorithm?

Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

else:

Z \leftarrow T + P

return T
```

▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$

- careful timing analysis will reveal Hamming weight of secret k
- power analysis will leak bits of k

► Use double-and-add-always algorithm?

• the result of the point addition is used if and only if $k_i = 1$

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

else:

Z \leftarrow T + P

return T
```

▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$

- careful timing analysis will reveal Hamming weight of secret k
- power analysis will leak bits of k

Use double-and-add-always algorithm?

- the result of the point addition is used if and only if $k_i = 1$
- \Rightarrow vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

• perform one addition and one doubling at each step

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$

Example: k = 19

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$

• Example: $k = 19 = (10011)_2$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = \qquad \qquad = \mathcal{O}$$
$$T_1 = P \qquad \qquad = P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (\underline{1}0011)_2$

$$T_0 = \qquad \qquad = \mathcal{O}$$
$$T_1 = P \qquad \qquad = P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (\underline{1}0011)_2$

$$T_0 = P = P$$
$$T_1 = P = P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (\underline{1}0011)_2$

$$T_0 = P = P$$
$$T_1 = P \cdot 2 = 2P$$

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P = P$$
$$T_1 = P \cdot 2 = 2P$$

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P = P$$
$$T_1 = P \cdot 2 + P = 3P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2 \qquad = 2P$$

 $T_1 = P \cdot 2 + P = 3P$

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2 \qquad = 2P$$

 $T_1 = P \cdot 2 + P = 3P$

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2 = 2P$$

$$T_1 = P \cdot 2 + P + 2P = 5P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2^2 = 4P$$

$$T_1 = P \cdot 2 + P + 2P = 5P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (100\underline{1}1)_2$

$$T_0 = P \cdot 2^2 = 4P$$

$$T_1 = P \cdot 2 + P + 2P = 5P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (100\underline{1}1)_2$

$$T_0 = P \cdot 2^2 + 5P = 9P$$

 $T_1 = P \cdot 2 + P + 2P = 5P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (100\underline{1}1)_2$

$$T_0 = P \cdot 2^2 + 5P = 9P$$

 $T_1 = (P \cdot 2 + P + 2P) \cdot 2 = 10P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (1001\underline{1})_2$

$$T_0 = P \cdot 2^2 + 5P = 9P$$

 $T_1 = (P \cdot 2 + P + 2P) \cdot 2 = 10P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (1001\underline{1})_2$

$$T_0 = P \cdot 2^2 + 5P + 10P = 19P$$

$$T_1 = (P \cdot 2 + P + 2P) \cdot 2 = 10P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (1001\underline{1})_2$

$$T_0 = P \cdot 2^2 + 5P + 10P = 19P$$

$$T_1 = (P \cdot 2 + P + 2P) \cdot 2^2 = 20P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2^2 + 5P + 10P = 19P$$

$$T_1 = (P \cdot 2 + P + 2P) \cdot 2^2 = 20P$$

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

▶ The conditional branches depend on the value of secret bit k_i

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► The conditional branches depend on the value of secret bit k_i ⇒ might be vulnerable to branch prediction attacks

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: $T_{1-k_{i}} \leftarrow T_{0} + T_{1}$ $T_{k_{i}} \leftarrow 2T_{k_{i}}$ return T_{0}

▶ The conditional branches depend on the value of secret bit k_i ⇒ might be vulnerable to branch prediction attacks

▶ Compute indices for T_0 and T_1 from k_i ?

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: $T_{1-k_{i}} \leftarrow T_{0} + T_{1}$ $T_{k_{i}} \leftarrow 2T_{k_{i}}$ return T_{0}

► The conditional branches depend on the value of secret bit k_i ⇒ might be vulnerable to branch prediction attacks

- Compute indices for T_0 and T_1 from k_i ?
 - memory accesses to T_0 or T_1 depend on secret bit k_i

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: $T_{1-k_{i}} \leftarrow T_{0} + T_{1}$ $T_{k_{i}} \leftarrow 2T_{k_{i}}$ return T_{0}

► The conditional branches depend on the value of secret bit k_i ⇒ might be vulnerable to branch prediction attacks

- Compute indices for T_0 and T_1 from k_i ?
 - memory accesses to T_0 or T_1 depend on secret bit k_i
 - \Rightarrow might be vulnerable to cache attacks

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: $M \leftarrow (k_{i} \dots k_{i})_{2}$ $R \leftarrow T_{0} + T_{1}$ $S \leftarrow 2((\overline{M}\&T_{0}) \mid (M\&T_{1}))$ $T_{0} \leftarrow (\overline{M}\&S) \mid (M\&R)$ $T_{1} \leftarrow (\overline{M}\&R) \mid (M\&S)$ return T_{0}

- ▶ The conditional branches depend on the value of secret bit k_i ⇒ might be vulnerable to branch prediction attacks
- Compute indices for T_0 and T_1 from k_i ?
 - memory accesses to T_0 or T_1 depend on secret bit k_i
 - \Rightarrow might be vulnerable to cache attacks
- Use bit masking to avoid secret-dependent memory access patterns

Outline

- I. Scalar multiplication
- II. Elliptic curve arithmetic
- III. Finite field arithmetic
- IV. Software considerations
- V. Notions of hardware design

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of P is $-P = (x_P, -y_P)$

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of *P* is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q, \text{ or} \\ -\frac{(\partial f/\partial x)(x_P, y_P)}{(\partial f/\partial y)(x_P, y_P)} = \frac{3x_P^2 + a}{2y_P} & \text{if } P = Q \end{cases}$$

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of *P* is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q, \text{ or} \\ -\frac{(\partial f/\partial x)(x_P, y_P)}{(\partial f/\partial y)(x_P, y_P)} = \frac{3x_P^2 + a}{2y_P} & \text{if } P = Q \end{cases}$$

▶ Cost (number of inversions, multiplications and squares in \mathbb{F}_q):

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of *P* is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q, \text{ or} \\ -\frac{(\partial f/\partial x)(x_P, y_P)}{(\partial f/\partial y)(x_P, y_P)} = \frac{3x_P^2 + a}{2y_P} & \text{if } P = Q \end{cases}$$

Cost (number of inversions, multiplications and squares in F_q):
 addition: 1I + 2M + 1S

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of P is $-P = (x_P, -y_P)$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q, \text{ or} \\ -\frac{(\partial f/\partial x)(x_P, y_P)}{(\partial f/\partial y)(x_P, y_P)} = \frac{3x_P^2 + a}{2y_P} & \text{if } P = Q \end{cases}$$

▶ Cost (number of inversions, multiplications and squares in \mathbb{F}_q):

- addition: 1I + 2M + 1S
- doubling: 1I + 2M + 2S

▶ One can use other coordinate systems which provide more efficient formulae

▶ One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

$$E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$$

• idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

 $E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

$$E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$$

- addition: 12M + 4S
- doubling: 4M + 6S

Other coordinate systems $E/\mathbb{F}_a: y^2 = x^3 + Ax + B$

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

$$E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$$

- addition: 12M + 4S
- doubling: 4M + 6S

▶ And many others: modified jacobian coordinates, López–Dahab (over \mathbb{F}_{2^n}), etc.

Other coordinate systems $E/\mathbb{F}_a: y^2 = x^3 + Ax + B$

▶ One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

$$E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$$

- addition: 12M + 4S
- doubling: 4M + 6S

▶ And many others: modified jacobian coordinates, López–Dahab (over \mathbb{F}_{2^n}), etc.

Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_q: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_q$ and char $(\mathbb{F}_q) \neq 2$

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_q: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_q$ and char $(\mathbb{F}_q) \neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_q : By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_q$ and char $(\mathbb{F}_q) \neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_q : By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_q$ and char $(\mathbb{F}_q) \neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char $(\mathbb{F}_a) \neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have

$$x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$$

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char(\mathbb{F}_a) $\neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have $x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$
 - the x-coord. of R = P + Q depends only on the x-coord. of P, Q, and P Q \Rightarrow x-only differential addition

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char(\mathbb{F}_a) $\neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have $x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$
 - the x-coord. of R = P + Q depends only on the x-coord. of P, Q, and P Q \Rightarrow x-only differential addition
 - similarly, when P = Q and $R = 2P = (x_R, y_R)$, we have

$$4x_P x_R (x_P^2 + A x_P + 1) = (x_P^2 - 1)^2$$

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char(\mathbb{F}_a) $\neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have $x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$
 - the x-coord. of R = P + Q depends only on the x-coord. of P, Q, and P Q \Rightarrow x-only differential addition
 - similarly, when P = Q and $R = 2P = (x_R, y_R)$, we have

$$4x_P x_R (x_P^2 + A x_P + 1) = (x_P^2 - 1)^2$$

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char(\mathbb{F}_a) $\neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have $x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$
 - the x-coord. of R = P + Q depends only on the x-coord. of P, Q, and P Q \Rightarrow x-only differential addition
 - similarly, when P = Q and $R = 2P = (x_R, y_R)$, we have

$$4x_P x_R (x_P^2 + A x_P + 1) = (x_P^2 - 1)^2$$

 \Rightarrow *x*-only doubling

► We can drop the *y*-coordinate altogether in the scalar multiplication

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char(\mathbb{F}_a) $\neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have $x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$
 - the x-coord. of R = P + Q depends only on the x-coord. of P, Q, and P Q \Rightarrow x-only differential addition
 - similarly, when P = Q and $R = 2P = (x_R, y_R)$, we have

$$4x_P x_R (x_P^2 + A x_P + 1) = (x_P^2 - 1)^2$$

- ▶ We can drop the *y*-coordinate altogether in the scalar multiplication
 - use projective coordinates: points (X : Z) with x = X/Z

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char(\mathbb{F}_a) $\neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have $x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$
 - the x-coord. of R = P + Q depends only on the x-coord. of P, Q, and P Q \Rightarrow x-only differential addition
 - similarly, when P = Q and $R = 2P = (x_R, y_R)$, we have

$$4x_P x_R (x_P^2 + A x_P + 1) = (x_P^2 - 1)^2$$

- ▶ We can drop the *y*-coordinate altogether in the scalar multiplication
 - use projective coordinates: points (X : Z) with x = X/Z
 - cheap differential addition (4M + 2S) and doubling (2M + 2S)

- ▶ Proposed by Montgomery in 1987, Montgomery curves are of the form $C/\mathbb{F}_a: By^2 = x^3 + Ax^2 + x$, with parameters $A, B \in \mathbb{F}_a$ and char(\mathbb{F}_a) $\neq 2$
 - all Montgomery curves are elliptic curves
 - not all elliptic curves can be rewritten in Montgomery form
- Addition and doubling formulae
 - let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q) \setminus \{\mathcal{O}\}$, with $P \neq \pm Q$
 - then, writing $R = P + Q = (x_R, y_R)$ and $S = P Q = (x_S, y_S)$, we have $x_R x_S (x_P - x_Q)^2 = (x_P x_Q - 1)^2$
 - the x-coord. of R = P + Q depends only on the x-coord. of P, Q, and P Q \Rightarrow x-only differential addition
 - similarly, when P = Q and $R = 2P = (x_R, y_R)$, we have

$$4x_P x_R (x_P^2 + A x_P + 1) = (x_P^2 - 1)^2$$

- ▶ We can drop the *y*-coordinate altogether in the scalar multiplication
 - use projective coordinates: points (X : Z) with x = X/Z
 - cheap differential addition (4M + 2S) and doubling (2M + 2S)
 - compatible with the Montgomery ladder (since $T_1 T_0 = P$)

Proposed by Edwards in 2007, Edwards curves are of the form

 $C/\mathbb{F}_q: x^2+y^2=1+dx^2y^2$, with parameter $d\in\mathbb{F}_q$ and $\mathrm{char}(\mathbb{F}_q)
eq 2$

Proposed by Edwards in 2007, Edwards curves are of the form

 $C/\mathbb{F}_q: x^2+y^2=1+dx^2y^2$, with parameter $d\in\mathbb{F}_q$ and $\mathrm{char}(\mathbb{F}_q)
eq 2$

• all Edwards curves are elliptic curves

• not all elliptic curves can be rewritten in Edwards form

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming *d* is not a square in \mathbb{F}_q)

• neutral element: $\mathcal{O} = (0, 1)$

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

- ▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)
 - neutral element: $\mathcal{O} = (0, 1)$
 - opposite: for all $P = (x_P, y_P) \in C(\mathbb{F}_q), \ -P = (-x_P, y_P)$

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)

- neutral element: $\mathcal{O} = (0, 1)$
- opposite: for all $P = (x_P, y_P) \in C(\mathbb{F}_q)$, $-P = (-x_P, y_P)$
- addition: for all $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q)$, then

$$P+Q=\left(\frac{x_Py_Q+x_Qy_P}{1+dx_Px_Qy_Py_Q},\frac{y_Py_Q-x_Px_Q}{1-dx_Px_Qy_Py_Q}\right)$$

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)

- neutral element: $\mathcal{O} = (0, 1)$
- opposite: for all $P = (x_P, y_P) \in C(\mathbb{F}_q)$, $-P = (-x_P, y_P)$
- addition: for all $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q)$, then

$$P+Q=\left(\frac{x_Py_Q+x_Qy_P}{1+dx_Px_Qy_Py_Q},\frac{y_Py_Q-x_Px_Q}{1-dx_Px_Qy_Py_Q}\right)$$

doubling: same as addition

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)

- neutral element: $\mathcal{O} = (0, 1)$
- opposite: for all $P = (x_P, y_P) \in C(\mathbb{F}_q)$, $-P = (-x_P, y_P)$
- addition: for all $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q)$, then

$$P+Q=\left(rac{x_Py_Q+x_Qy_P}{1+dx_Px_Qy_Py_Q},rac{y_Py_Q-x_Px_Q}{1-dx_Px_Qy_Py_Q}
ight)$$

- doubling: same as addition
- Strongly unified and complete addition law:
 - works for both addition and doubling
 - no exceptional case

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)

- neutral element: $\mathcal{O} = (0, 1)$
- opposite: for all $P = (x_P, y_P) \in C(\mathbb{F}_q)$, $-P = (-x_P, y_P)$
- addition: for all $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q)$, then

$$P+Q=\left(rac{x_Py_Q+x_Qy_P}{1+dx_Px_Qy_Py_Q},rac{y_Py_Q-x_Px_Q}{1-dx_Px_Qy_Py_Q}
ight)$$

- doubling: same as addition
- Strongly unified and complete addition law:
 - works for both addition and doubling
 - no exceptional case
 - \Rightarrow resilient against timing or power analysis attacks

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)

- neutral element: $\mathcal{O} = (0, 1)$
- opposite: for all $P = (x_P, y_P) \in C(\mathbb{F}_q)$, $-P = (-x_P, y_P)$
- addition: for all $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q)$, then

$$P+Q=\left(\frac{x_Py_Q+x_Qy_P}{1+dx_Px_Qy_Py_Q},\frac{y_Py_Q-x_Px_Q}{1-dx_Px_Qy_Py_Q}\right)$$

- doubling: same as addition
- Strongly unified and complete addition law:
 - works for both addition and doubling
 - no exceptional case
 - \Rightarrow resilient against timing or power analysis attacks

▶ Inverted coordinates: points (X : Y : Z) with (x, y) = (Z/X, Z/Y)

- addition: 9M + 1S
- doubling: 3M + 4S

 $C/\mathbb{F}_q: x^2 + y^2 = 1 + dx^2y^2$

▶ Addition and doubling formulae (assuming d is not a square in \mathbb{F}_q)

- neutral element: $\mathcal{O} = (0, 1)$
- opposite: for all $P = (x_P, y_P) \in C(\mathbb{F}_q)$, $-P = (-x_P, y_P)$
- addition: for all $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in C(\mathbb{F}_q)$, then

$$P + Q = \left(\frac{x_P y_Q + x_Q y_P}{1 + dx_P x_Q y_P y_Q}, \frac{y_P y_Q - x_P x_Q}{1 - dx_P x_Q y_P y_Q}\right)$$

- doubling: same as addition
- Strongly unified and complete addition law:
 - works for both addition and doubling
 - no exceptional case
 - \Rightarrow resilient against timing or power analysis attacks
- ▶ Inverted coordinates: points (X : Y : Z) with (x, y) = (Z/X, Z/Y)
 - addition: 9M + 1S
 - doubling: 3M + 4S
- ► Generalization by Bernstein *et al.* (2008): twisted Edwards curves $C/\mathbb{F}_q : ax^2 + y^2 = 1 + dx^2y^2$, with parameter $a, d \in \mathbb{F}_q$ and $char(\mathbb{F}_q) \neq 2$
 - birationally equivalent to Montgomery curves

Outline

- I. Scalar multiplication
- II. Elliptic curve arithmetic

III. Finite field arithmetic

- IV. Software considerations
- V. Notions of hardware design

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ▶ Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with n = |p| between 250 and 500 bits
 - binary field \mathbb{F}_{2^n} , with prime *m* between 250 and 500
 - ... still secure? [See M. Kosters' talk]

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ► Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with n = |p| between 250 and 500 bits
 - binary field F_{2ⁿ}, with prime *m* between 250 and 500
 ... still secure? [See M. Kosters' talk]
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication)
 - Ieft and right shifts
 - bitwise logic operations (bitwise NOT, AND, etc.)

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ► Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with n = |p| between 250 and 500 bits
 - binary field F_{2ⁿ}, with prime *m* between 250 and 500
 ... still secure? [See M. Kosters' talk]
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication)
 - left and right shifts
 - bitwise logic operations (bitwise NOT, AND, etc.)
- on w-bit words:
 - *w* = 32 or 64 on CPUs
 - w = 8 or 16 bits on microcontrollers
 - a bit more flexibility in hardware (but integer arithmetic with w > 64 bits is hard!)

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ► Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with n = |p| between 250 and 500 bits
 - binary field F_{2ⁿ}, with prime *m* between 250 and 500
 ... still secure? [See M. Kosters' talk]
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication)
 - left and right shifts
 - bitwise logic operations (bitwise NOT, AND, etc.)
- on w-bit words:
 - *w* = 32 or 64 on CPUs
 - w = 8 or 16 bits on microcontrollers
 - a bit more flexibility in hardware (but integer arithmetic with w > 64 bits is hard!)
 - \Rightarrow elements of \mathbb{F}_q represented using several words

▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

▶ Addition of *A* and $B \in \mathbb{F}_P$:

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)
 - lazy reduction: if kw > n, do not reduce after each addition

• Multiplication of A and $B \in \mathbb{F}_p$:

- Multiplication of A and $B \in \mathbb{F}_p$:
 - schoolbook method: k^2 w-by-w-bit multiplications

• Multiplication of A and $B \in \mathbb{F}_p$:

• Multiplication of A and $B \in \mathbb{F}_p$:

• Multiplication of A and $B \in \mathbb{F}_p$:

- Multiplication of A and $B \in \mathbb{F}_p$:
 - schoolbook method: k^2 w-by-w-bit multiplications

- Multiplication of A and $B \in \mathbb{F}_p$:
 - schoolbook method: k^2 w-by-w-bit multiplications

• Multiplication of A and $B \in \mathbb{F}_p$:

• Multiplication of A and $B \in \mathbb{F}_p$:

• Multiplication of A and $B \in \mathbb{F}_p$:

• Multiplication of A and $B \in \mathbb{F}_p$:

- Multiplication of A and $B \in \mathbb{F}_p$:
 - schoolbook method: k² w-by-w-bit multiplications
 - final product fits into 2k words

- Multiplication of A and $B \in \mathbb{F}_p$:
 - schoolbook method: k² w-by-w-bit multiplications
 - final product fits into 2k words
 - need to reduce product modulo *P* (see later)

- Multiplication of A and $B \in \mathbb{F}_p$:
 - schoolbook method: k² w-by-w-bit multiplications
 - final product fits into 2k words
 - need to reduce product modulo P (see later)
 - should run in constant time (for fixed P)!

▶ In which order should we compute the subproducts $a_i b_j$?

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning

▶ In which order should we compute the subproducts $a_i b_j$?

operand scanning

+

▶ In which order should we compute the subproducts $a_i b_j$?

operand scanning

▶ In which order should we compute the subproducts $a_i b_j$?

• operand scanning

▶ In which order should we compute the subproducts $a_i b_j$?

operand scanning

▶ In which order should we compute the subproducts $a_i b_i$?

• operand scanning: straightforward, regular loop control

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

+

+

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

- ▶ In which order should we compute the subproducts $a_i b_j$?
 - operand scanning: straightforward, regular loop control
 - product scanning

- ▶ In which order should we compute the subproducts $a_i b_i$?
 - operand scanning: straightforward, regular loop control
 - product scanning: fewer memory accesses and carry propagations

- ▶ In which order should we compute the subproducts $a_i b_i$?
 - operand scanning: straightforward, regular loop control
 - product scanning: fewer memory accesses and carry propagations
 - many variants, such as left-to-right

▶ In which order should we compute the subproducts $a_i b_j$?

- operand scanning: straightforward, regular loop control
- product scanning: fewer memory accesses and carry propagations
- many variants, such as left-to-right
- subquadratic algorithms (e.g., Karatsuba) when k is large

• Given an integer $A < P^2$ (on 2k words), compute $R = A \mod P$

▶ Easy case: *P* is a pseudo-Mersenne prime $P = 2^n - c$ with *c* "small" (e.g., $< 2^w$)

• Given an integer $A < P^2$ (on 2k words), compute $R = A \mod P$

Easy case: P is a pseudo-Mersenne prime P = 2ⁿ − c with c "small" (e.g., < 2^w)
 then 2ⁿ ≡ c (mod P)

- ▶ Easy case: *P* is a pseudo-Mersenne prime $P = 2^n c$ with *c* "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$

- ▶ Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times w$ -word multiplication)

- ▶ Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times w$ -word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times w$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times w$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times w$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times w$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)
 - final subtraction might be necessary

• Given an integer $A < P^2$ (on 2k words), compute $R = A \mod P$

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times w$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)
 - final subtraction might be necessary

• Examples: $P = 2^{255} - 19$ (Curve25519) or $P = 2^{448} - 2^{224} - 1$ (Ed448-Goldilocks)

▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A - QP

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- **Barrett** reduction:

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- ► Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw} / P \rfloor$ (k words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- ► Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw} / P \rfloor$ (k words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- ► Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

► Barrett reduction:

- precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)
- given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
- compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times k$ -word multiplication)

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

Barrett reduction:

- precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)
- given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
- compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times k$ -word multiplication)

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

► Barrett reduction:

- precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)
- given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
- compute $\tilde{Q} \leftarrow \lfloor A_H \cdot P'/2^{(k+1)w} \rfloor$ (one $(k+1) \times k$ -word multiplication)

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

Barrett reduction:

- precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)
- given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
- compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times k$ -word multiplication)
- compute $\tilde{A} \leftarrow \tilde{Q} \cdot P$ (one $k \times k$ -word multiplication)

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

Barrett reduction:

- precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)
- given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
- compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times k$ -word multiplication)
- compute $\hat{A} \leftarrow \hat{Q} \cdot P$

(one $k \times k$ -word multiplication)

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

Barrett reduction:

- precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k words)
- given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
- compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times k$ -word multiplication)
- compute $\hat{A} \leftarrow \hat{Q} \cdot P$

(one $k \times k$ -word multiplication)

• compute remainder $R \leftarrow A - \tilde{A}$

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

Barrett reduction:

- precompute $P' = \lfloor 2^{2kw} / P \rfloor$ (k words)
- given $A < P^2$, get the k+1 most significant words $A_H \leftarrow |A/2^{(k-1)w}|$
- compute Q̃ ← [A_H · P'/2^{(k+1)w}] (one (k + 1) × k-word multiplication)
 compute Ã ← (Q̃ · P) mod 2^{(k+1)w} (one k × k-word short multiplication)
- compute remainder $R \leftarrow A \tilde{A}$

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

Barrett reduction:

- precompute $P' = \lfloor 2^{2kw} / P \rfloor$ (k words)
- given $A < P^2$, get the k+1 most significant words $A_H \leftarrow |A/2^{(k-1)w}|$
- compute Q̃ ← [A_H · P'/2^{(k+1)w}] (one (k + 1) × k-word multiplication)
 compute Ã ← (Q̃ · P) mod 2^{(k+1)w} (one k × k-word short multiplication)
- compute remainder $R \leftarrow A \tilde{A}$
- at most two extra subtractions

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and $A < 2^{kw}P$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)

- requires *P* odd (on *k* words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)

- requires *P* odd (on *k* words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)

- requires *P* odd (on *k* words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \tilde{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \tilde{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \tilde{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \tilde{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $A \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent $X \in \mathbb{F}_P$ in Montgomery representation: $\hat{X} = (X \cdot 2^{kw}) \mod P$

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $A \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X ⋅ 2^{kw}) mod P
 if Z = (X ⋅ Y) mod P, then

$$\mathsf{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $A \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X ⋅ 2^{kw}) mod P
 if Z = (X ⋅ Y) mod P, then

$$\operatorname{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

$$\hat{X} = \operatorname{REDC}(X, 2^{2kw} \mod P)$$
 and $X = \operatorname{REDC}(\hat{X}, 1)$

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute A ← K · P (one k × k-word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X · 2^{kw}) mod P
 if Z = (X · Y) mod P, then

$$\mathsf{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

 $\hat{X} = \operatorname{REDC}(X, 2^{2kw} \mod P)$ and $X = \operatorname{REDC}(\hat{X}, 1)$

• Montgomery representation is compatible with addition / subtraction in \mathbb{F}_{P}

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X · 2^{kw}) mod P
 if Z = (X · Y) mod P, then

$$\mathsf{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

 $\hat{X} = \operatorname{REDC}(X, 2^{2kw} \mod P)$ and $X = \operatorname{REDC}(\hat{X}, 1)$

• Montgomery representation is compatible with addition / subtraction in \mathbb{F}_{P}

 \Rightarrow do all computations in Montgomery repr. instead of converting back and forth

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X ⋅ 2^{kw}) mod P
 if Z = (X ⋅ Y) mod P, then

$$\mathsf{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

 $\hat{X} = \operatorname{REDC}(X, 2^{2kw} \mod P)$ and $X = \operatorname{REDC}(\hat{X}, 1)$

- Montgomery representation is compatible with addition / subtraction in $\mathbb{F}_{\mathcal{P}}$
- \Rightarrow do all computations in Montgomery repr. instead of converting back and forth
- ▶ REDC can be computed iteratively (one word at a time) and interleaved with the computation of $\hat{X} \cdot \hat{Y}$

▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of A

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of A
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of A
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of A
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2 \xrightarrow{S^2} A^9$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2 \xrightarrow{S^2} A^9 \longrightarrow A^{11}$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2 \xrightarrow{S^2} A^9 \longrightarrow A^{11} \xrightarrow{S} A^{2^5-1}$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2 \xrightarrow{S^2} A^9 \xrightarrow{} A^{11} \xrightarrow{S} A^{2^5-1} \xrightarrow{S^5} A^{2^{10}-1}$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^{2} \xrightarrow{S^{2}} A^{9} \xrightarrow{} A^{11} \xrightarrow{S} A^{2^{5}-1} \xrightarrow{S^{5}} A^{2^{10}-1} \xrightarrow{S^{10}} A^{2^{20}-1}$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} = U \mod{P}$
 - can be adapted to Montgomery representation
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- we know that $A^{P-1} = 1 \pmod{P}$, whence $A^{P-2} = A^{-1} \pmod{P}$
- precompute short sequence of squarings and multiplications for fast exponentiation of A
- example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

 $m_i = 2^w - c_i$, with small c_i

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

• typically, the m_i 's are chosen to fit in a machine word (w bits)

• pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

• write $M = \prod_{i=1}^{k} m_i$ and, for all i, $M_i = M/m_i$

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

• typically, the m_i 's are chosen to fit in a machine word (w bits)

• pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

• write $M = \prod_{i=1}^{k} m_i$ and, for all i, $M_i = M/m_i$

• Let A < M be an integer

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

• write $M = \prod_{i=1}^{k} m_i$ and, for all i, $M_i = M/m_i$

- Let A < M be an integer
 - represent A as the tuple $\overrightarrow{A} = (a_1, \dots, a_k)$ with $a_i = A \mod m_i = |A|_{m_i}$, for all $i \rightarrow$ that is the RNS representation of A in base \mathcal{B}

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

 $m_i = 2^w - c_i$, with small c_i

- write $M = \prod_{i=1}^{i} m_i$ and, for all i, $M_i = M/m_i$
- Let A < M be an integer

k

- represent A as the tuple $\overrightarrow{A} = (a_1, \dots, a_k)$ with $a_i = A \mod m_i = |A|_{m_i}$, for all $i \rightarrow$ that is the RNS representation of A in base \mathcal{B}
- given A = (a₁,..., a_k), retrieve the unique corresponding integer A ∈ Z/MZ using the Chinese remaindering theorem (CRT):

$$A = \left| \sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i \right|_{M_i}$$

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

 $m_i = 2^w - c_i$, with small c_i

- write $M = \prod_{i=1}^{i} m_i$ and, for all i, $M_i = M/m_i$
- Let A < M be an integer

k

- represent A as the tuple $\overrightarrow{A} = (a_1, \dots, a_k)$ with $a_i = A \mod m_i = |A|_{m_i}$, for all $i \rightarrow$ that is the RNS representation of A in base \mathcal{B}
- given A = (a₁,..., a_k), retrieve the unique corresponding integer A ∈ Z/MZ using the Chinese remaindering theorem (CRT):

$$A = \left| \sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i \right|_{\mathcal{M}}$$

▶ If $P \leq M$, we can represent elements of \mathbb{F}_P in RNS

• Let
$$\overrightarrow{A} = (a_1, \dots, a_k)$$
 and $\overrightarrow{B} = (b_1, \dots, b_k)$

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

Let \$\vec{A}\$ = (a₁,..., a_k) and \$\vec{B}\$ = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
\$\vec{A}\$ ± \$\vec{B}\$ = (|a₁ ± b₁|_{m1},..., |a_k ± b_k|_{mk})
\$\vec{A}\$ × \$\vec{B}\$ = (|a₁ × b₁|_{m1},..., |a_k × b_k|_{mk})

a 1	a 2	a ₃	a4
b_1	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

<i>a</i> 1	a ₂	a 3	a4
×	×	×	×
b_1	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> 4

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

• native parallelism: suited to SIMD instructions and hardware implementation

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

• native parallelism: suited to SIMD instructions and hardware implementation

Limitations:

- operations are computed in $\mathbb{Z}/M\mathbb{Z}$: beware of overflows!
- no simple way to compute divisons, modular reductions or comparisons

▶ Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS

► Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left| \sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i \right|_{\mathcal{M}}$$

- ► Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

• Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor$$

- ► Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

• Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i}}{m_i} \right\rfloor$$

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

• Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i}}{m_i} \right\rfloor$$

• approximate $m_i = 2^w - c_i$ by 2^w

- ► Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

• Compute \tilde{q} , approximation of q:

$$q = \left[\sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M}\right] \approx \left[\sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^w}\right]$$

• approximate $m_i = 2^w - c_i$ by 2^w

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor \approx \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^w} \right\rfloor$$

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of $|a_i \cdot M_i^{-1}|_{m_i}$ to compute \tilde{q}

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

• Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor \approx \left\lfloor \sum_{i=1}^{k} \frac{\left\lfloor \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^{w-t}} \right\rfloor}{2^t} \right\rfloor$$

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of $|a_i \cdot M_i^{-1}|_{m_i}$ to compute \tilde{q}

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS \Rightarrow Need to approximate CRT reconstruction and reduce it modulo P
- From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with 0 < q < k, whose actual value depends on A

 \blacktriangleright Compute \tilde{q} , approximation of q:

$$q = \left[\sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M}\right] \approx \left[\sum_{i=1}^{k} \frac{\left\lfloor \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^{w-t}} \right\rfloor}{2^t} + \varepsilon\right]$$

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of |a_i · M_i⁻¹|_{mi} to compute q̃
 add fixed corrective term (Σ_i c_i + k(2^{w-t} − 1))/2^w < ε < 1

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

Compute \tilde{q} , approximation of q:

$$q = \left[\sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M}\right] \approx \left[\sum_{i=1}^{k} \frac{\left[\frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^{w-t}}\right]}{2^t} + \varepsilon\right] = \tilde{q}$$

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of $|a_i \cdot M_i^{-1}|_{m_i}$ to compute \tilde{q}
- add fixed corrective term $\left(\sum_{i} c_{i} + k(2^{w-t} 1)\right)/2^{w} < \varepsilon < 1$

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor \approx \left\lfloor \sum_{i=1}^{k} \frac{\left\lfloor \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^{w-t}} \right\rfloor}{2^t} + \varepsilon \right\rfloor = \tilde{q}$$

Т

1 Ag-1 I

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of $|a_i \cdot M_i^{-1}|_{m_i}$ to compute \tilde{q}
- add fixed corrective term $\left(\sum_{i} c_{i} + k(2^{w-t} 1)\right)/2^{w} < \varepsilon < 1$

▶ If $0 \le A < (1 - \varepsilon)M$, then $\tilde{q} = q$ and

$$A = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - \tilde{q}M$$

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor \approx \left\lfloor \sum_{i=1}^{k} \frac{\left\lfloor \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^{w-t}} \right\rfloor}{2^t} + \varepsilon \right\rfloor = \tilde{q}$$

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of $|a_i \cdot M_i^{-1}|_{m_i}$ to compute \tilde{q}
- add fixed corrective term $(\sum_{i} c_i + k(2^{w-t} 1))/2^w < \varepsilon < 1$

► If $0 \le A < (1 - \varepsilon)M$, then $\tilde{q} = q$ and $A \mod P = \left(\left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i \right) - \tilde{q}M \right) \mod P$

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor \approx \left\lfloor \sum_{i=1}^{k} \frac{\left\lfloor \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^{w-t}} \right\rfloor}{2^t} + \varepsilon \right\rfloor = \tilde{q}$$

T

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of $|a_i \cdot M_i^{-1}|_{m_i}$ to compute \tilde{q}
- add fixed corrective term $\left(\sum_{i} c_{i} + k(2^{w-t} 1)\right)/2^{w} < \varepsilon < 1$

▶ If $0 \le A < (1 - \varepsilon)M$, then $\tilde{q} = q$ and

$$A \bmod P = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P$$

- Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS ⇒ Need to approximate CRT reconstruction and reduce it modulo P
- ► From the CRT:

$$A = \left|\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right|_{\mathcal{M}} = \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i\right) - qM$$

with $0 \le q < k$, whose actual value depends on A

Compute \tilde{q} , approximation of q:

$$q = \left\lfloor \sum_{i=1}^{k} \frac{|a_i \cdot M_i^{-1}|_{m_i} \cdot M_i}{M} \right\rfloor \approx \left\lfloor \sum_{i=1}^{k} \frac{\left\lfloor \frac{|a_i \cdot M_i^{-1}|_{m_i}}{2^{w-t}} \right\rfloor}{2^t} + \varepsilon \right\rfloor = \tilde{q}$$

T

- approximate $m_i = 2^w c_i$ by 2^w
- use only the t most significant bits of $|a_i \cdot M_i^{-1}|_{m_i}$ to compute \tilde{q}
- add fixed corrective term $\left(\sum_{i} c_{i} + k(2^{w-t} 1)\right)/2^{w} < \varepsilon < 1$

▶ If $0 \le A < (1 - \varepsilon)M$, then $\tilde{q} = q$ and

$$A \bmod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

$$A \mod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$:

$$\begin{array}{l} (\forall i) \ z_i \leftarrow \left| a_i \cdot |M_i^{-1}|_{m_i} \right|_{m_i} \\ (\forall i) \ \tilde{z}_i \leftarrow \left\lfloor z_i/2^{w-t} \right\rfloor \\ \tilde{q} \leftarrow \left\lfloor \sum_i \tilde{z}_i/2^t + \varepsilon \right\rfloor \\ (\forall i) \ r_i \leftarrow 0 \\ \textbf{for } j \leftarrow 1 \ \textbf{to } k: \\ (\forall i) \ r_i \leftarrow \left| r_i + z_j \cdot ||M_j|_P|_{m_i} \right|_{m_i} \\ (\forall i) \ r_i \leftarrow \left| r_i - ||\tilde{q}M|_P|_{m_i} \right|_{m_i} \end{array}$$

$$A \mod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$:
 $(\forall i) \ z_i \leftarrow |a_i \cdot |M_i^{-1}|_{m_i}|_{m_i}$
 $(\forall i) \ \widetilde{z}_i \leftarrow [z_i/2^{w-t}]$
 $\widetilde{q} \leftarrow [\sum_i \widetilde{z}_i/2^t + \varepsilon]$
 $(\forall i) \ r_i \leftarrow 0$
for $j \leftarrow 1$ to k :
 $(\forall i) \ r_i \leftarrow |r_i + z_j \cdot ||M_j|_P|_{m_i}|_{m_i}$
 $(\forall i) \ r_i \leftarrow |r_i - ||\widetilde{q}M|_P|_{m_i}|_{m_i}$

▶ Precomputations:

$$A \mod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$:
 $(\forall i) \ z_i \leftarrow |a_i \cdot |M_i^{-1}|_{m_i}|_{m_i}$
 $(\forall i) \ \tilde{z}_i \leftarrow [z_i/2^{w-t}]$
 $\tilde{q} \leftarrow [\sum_i \tilde{z}_i/2^t + \varepsilon]$
 $(\forall i) \ r_i \leftarrow 0$
for $j \leftarrow 1$ to k :
 $(\forall i) \ r_i \leftarrow |r_i + z_j \cdot ||M_j|_P|_{m_i}|_{m_i}$
 $(\forall i) \ r_i \leftarrow |r_i - ||\tilde{q}M|_P|_{m_i}|_{m_i}$

Precomputations:

• for all $i \in \{1, \ldots, k\}$, $|M_i^{-1}|_{m_i}$ (k words)

$$A \mod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$:
 $(\forall i) \neq (|a_i| |A^{-1}|)$

$$\begin{array}{l} (\forall i) \ z_i \leftarrow \left|a_i \cdot |M_i^{-1}|_{m_i}\right|_{m_i} \\ (\forall i) \ \tilde{z}_i \leftarrow \left\lfloor z_i/2^{w-t} \right\rfloor \\ \tilde{q} \leftarrow \left\lfloor \sum_i \tilde{z}_i/2^t + \varepsilon \right\rfloor \\ (\forall i) \ r_i \leftarrow 0 \\ \textbf{for } j \leftarrow 1 \textbf{ to } k: \\ (\forall i) \ r_i \leftarrow \left|r_i + z_j \cdot ||M_j|_P|_{m_i}\right|_{m_i} \\ (\forall i) \ r_i \leftarrow \left|r_i - ||\tilde{q}M|_P|_{m_i}\right|_{m_i} \end{array}$$

Precomputations:

• for all
$$i \in \{1, \ldots, k\}$$
, $|M_i^{-1}|_{m_i}$ (k words)

• for all $j \in \{1, \ldots, k\}$, $|M_j|_P$ (k^2 words)

$$A \bmod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$: $(\forall i) \ z_i \leftarrow |a_i \cdot |M_i^{-1}|_{m_i}|_{m_i}$ $(\forall i) \ \widetilde{z}_i \leftarrow |z_i/2^{w-t}|$ $\widetilde{q} \leftarrow [\sum_i \widetilde{z}_i/2^t + \varepsilon]$ $(\forall i) \ r_i \leftarrow 0$ for $j \leftarrow 1$ to k: $(\forall i) \ r_i \leftarrow |r_i + z_j \cdot ||M_j|_P|_{m_i}|_{m_i}$ $(\forall i) \ r_i \leftarrow |r_i - ||\widetilde{q}M|_P|_{m_i}|_{m_i}$

Precomputations:

• for all
$$i \in \{1, \ldots, k\}$$
, $|\underline{M_i^{-1}}|_{m_i}$ (k words)

• for all
$$j \in \{1, \ldots, k\}$$
, $|M_j|_P$ (k^2 words)

• for all $\tilde{q} \in \{1, \ldots, k-1\}$, $\overrightarrow{|\tilde{q}M|_P}$ (k^2 words)

$$A \bmod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overline{A})$: $(\forall i) \ z_i \leftarrow |a_i \cdot |M_i^{-1}|_{m_i}|_{m_i}$ $(\forall i) \ \tilde{z}_i \leftarrow |z_i/2^{w-t}|$ $\tilde{q} \leftarrow \lfloor \sum_i \tilde{z}_i/2^t + \varepsilon \rfloor$ $(\forall i) \ r_i \leftarrow 0$ for $j \leftarrow 1$ to k: $(\forall i) \ r_i \leftarrow |r_i + z_j \cdot ||M_j|_P|_{m_i}|_{m_i}$ $(\forall i) \ r_i \leftarrow |r_i - ||\tilde{q}M|_P|_{m_i}|_{m_i}$

▶ Precomputations:

• for all
$$i \in \{1, \ldots, k\}$$
, $|\underline{M_i^{-1}}|_{m_i}$ (k words)

• for all
$$j \in \{1, \ldots, k\}$$
, $|M_j|_P$ (k^2 words)

• for all $ilde{q} \in \{1,\ldots,k-1\}$, $| ilde{q}M|_P^{\ \prime}$ (k^2 words)

► Cost:

$$A \mod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$:
 $(\forall i) \ z_i \leftarrow |a_i \cdot |M_i^{-1}|_{m_i}|_{m_i}$
 $(\forall i) \ \tilde{z}_i \leftarrow |z_i/2^{w-t}|$
 $\tilde{q} \leftarrow |\sum_i \tilde{z}_i/2^t + \varepsilon|$

$$\begin{array}{l} (\forall i) \ r_i \leftarrow 0 \\ \text{for } j \leftarrow 1 \ \text{to } k: \\ (\forall i) \ r_i \leftarrow \left| r_i + z_j \cdot ||M_j|_P|_{m_i} \right|_{m_i} \\ (\forall i) \ r_i \leftarrow \left| r_i - ||\tilde{q}M|_P|_{m_i} \right|_{m_i} \end{array}$$

Precomputations:

• for all
$$i \in \{1, \ldots, k\}$$
, $|\underline{M_i^{-1}}|_{m_i}$ (k words)

• for all
$$j \in \{1, \ldots, k\}$$
, $|M_j|_P$ (k^2 words)

• for all $\widetilde{q} \in \{1, \ldots, k-1\}$, $\overrightarrow{|\widetilde{q}M|_P}$ (k^2 words)

► Cost: *k* mults

$$A \bmod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$: $(\forall i) \ z_i \leftarrow |a_i \cdot |M_i^{-1}|_{m_i}|_{m_i}$ $(\forall i) \ \widetilde{z}_i \leftarrow |z_i/2^{w-t}|$ $\widetilde{q} \leftarrow [\sum_i \widetilde{z}_i/2^t + \varepsilon]$ $(\forall i) \ r_i \leftarrow 0$ for $j \leftarrow 1$ to k: $(\forall i) \ r_i \leftarrow |r_i + z_j \cdot ||M_j|_P|_{m_i}|_{m_i}$ $(\forall i) \ r_i \leftarrow |r_i - ||\widetilde{q}M|_P|_{m_i}|_{m_i}$

▶ Precomputations:

• for all
$$i \in \{1, \ldots, k\}$$
, $|\underline{M_i^{-1}}|_{m_i}$ (k words)

• for all
$$j \in \{1, \ldots, k\}$$
, $|M_j|_P$ (k^2 words)

• for all $\widetilde{q} \in \{1, \dots, k-1\}$, $\overrightarrow{|\widetilde{q}M|_P}$ (k^2 words)

• Cost:
$$k$$
 mults + k^2 mults

$$A \bmod P \equiv \left(\sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot |M_i|_P\right) - |\tilde{q}M|_P \pmod{P}$$

function reduce-mod- $P(\overrightarrow{A})$: $(\forall i) \ z_i \leftarrow |a_i \cdot |M_i^{-1}|_{m_i}|_{m_i}$ $(\forall i) \ \widetilde{z}_i \leftarrow |z_i/2^{w-t}|$ $\widetilde{q} \leftarrow [\sum_i \widetilde{z}_i/2^t + \varepsilon]$ $(\forall i) \ r_i \leftarrow 0$ for $j \leftarrow 1$ to k: $(\forall i) \ r_i \leftarrow |r_i + z_j \cdot ||M_j|_P|_{m_i}|_{m_i}$ $(\forall i) \ r_i \leftarrow |r_i - ||\widetilde{q}M|_P|_{m_i}|_{m_i}$

Precomputations:

• for all
$$i \in \{1, ..., k\}$$
, $|M_i^{-1}|_{m_i}$ (k words)

• for all
$$j \in \{1, \ldots, k\}$$
, $|M_j|_P$ (k^2 words)

• for all $\widetilde{q} \in \{1, \dots, k-1\}$, $\overrightarrow{|\widetilde{q}M|_P}$ (k^2 words)

▶ Cost: k mults + k^2 mults → quadratic complexity

► Requires two RNS bases $\mathcal{B}_{\alpha} = (m_{\alpha,1}, \dots, m_{\alpha,k})$ and $\mathcal{B}_{\beta} = (m_{\beta,1}, \dots, m_{\beta,k})$ such that $P < M_{\alpha}$, $P < M_{\beta}$, and $gcd(M_{\alpha}, M_{\beta}) = 1$

- ▶ Requires two RNS bases $\mathcal{B}_{\alpha} = (m_{\alpha,1}, \dots, m_{\alpha,k})$ and $\mathcal{B}_{\beta} = (m_{\beta,1}, \dots, m_{\beta,k})$ such that $P < M_{\alpha}$, $P < M_{\beta}$, and $gcd(M_{\alpha}, M_{\beta}) = 1$
- RNS base extension algorithm (BE) [Kawamura *et al.*, 2000]
 given X_α in base B_α, BE(X_α, B_α, B_β) computes X_β, the repr. of X in base B_β
 - similarly, $\mathsf{BE}(\overrightarrow{X_{\beta}}, \mathcal{B}_{\beta}, \mathcal{B}_{\alpha})$ computes $\overrightarrow{X_{\alpha}}$ in base \mathcal{B}_{α}

- ▶ Requires two RNS bases $\mathcal{B}_{\alpha} = (m_{\alpha,1}, \dots, m_{\alpha,k})$ and $\mathcal{B}_{\beta} = (m_{\beta,1}, \dots, m_{\beta,k})$ such that $P < M_{\alpha}$, $P < M_{\beta}$, and $gcd(M_{\alpha}, M_{\beta}) = 1$
- RNS base extension algorithm (BE) [Kawamura *et al.*, 2000]
 given X_α in base B_α, BE(X_α, B_α, B_β) computes X_β, the repr. of X in base B_β
 similarly, BE(X_β, B_β, B_α) computes X_α in base B_α
 - similar to RNS modular reduction $\rightarrow O(k^2)$ complexity

▶ Result is
$$(\overrightarrow{R_{\alpha}}, \overrightarrow{R_{\beta}}) \equiv (A \cdot M_{\alpha}^{-1}) \pmod{P}$$

• Result is $(\overrightarrow{R_{\alpha}}, \overrightarrow{R_{\beta}}) \equiv (A \cdot M_{\alpha}^{-1}) \pmod{P}$

See recent results on this topic by Bigou and Tisserand

Outline

- I. Scalar multiplication
- II. Elliptic curve arithmetic
- III. Finite field arithmetic
- IV. Software considerations
- V. Notions of hardware design

▶ In fact, pretty much has already been said...

▶ In fact, pretty much has already been said...

► Know your favorite CPU's instruction set by heart!

- ▶ In fact, pretty much has already been said...
- ► Know your favorite CPU's instruction set by heart!
 - what's PCLMULQDQ? how many 32-bit words can fit in a NEON register?

- ▶ In fact, pretty much has already been said...
- ► Know your favorite CPU's instruction set by heart!
 - what's PCLMULQDQ? how many 32-bit words can fit in a NEON register?
 - sometimes, floating-point arithmetic is faster than integer arithmetic

- ▶ In fact, pretty much has already been said...
- ► Know your favorite CPU's instruction set by heart!
 - what's PCLMULQDQ? how many 32-bit words can fit in a NEON register?
 - sometimes, floating-point arithmetic is faster than integer arithmetic
 - download http://www.agner.org/optimize/instruction_tables.pdf to find all instruction latencies and thoughputs for Intel and AMD CPUs

- ▶ In fact, pretty much has already been said...
- ► Know your favorite CPU's instruction set by heart!
 - what's PCLMULQDQ? how many 32-bit words can fit in a NEON register?
 - sometimes, floating-point arithmetic is faster than integer arithmetic
 - download http://www.agner.org/optimize/instruction_tables.pdf to find all instruction latencies and thoughputs for Intel and AMD CPUs
- Beware of fancy CPU features!
 - avoid secret-dependent memory access patterns (cache attacks)
 - avoid secret-dependent conditional branches (timing, branch predictor attacks)

- ▶ In fact, pretty much has already been said...
- ► Know your favorite CPU's instruction set by heart!
 - what's PCLMULQDQ? how many 32-bit words can fit in a NEON register?
 - sometimes, floating-point arithmetic is faster than integer arithmetic
 - download http://www.agner.org/optimize/instruction_tables.pdf to find all instruction latencies and thoughputs for Intel and AMD CPUs
- Beware of fancy CPU features!
 - avoid secret-dependent memory access patterns (cache attacks)
 - avoid secret-dependent conditional branches (timing, branch predictor attacks)
- ► Have a look at existing libraries (from OpenSSL to MPFQ):
 - plenty of great ideas in there!
 - you might even find bugs and vulnerabilities

- ▶ In fact, pretty much has already been said...
- ► Know your favorite CPU's instruction set by heart!
 - what's PCLMULQDQ? how many 32-bit words can fit in a NEON register?
 - sometimes, floating-point arithmetic is faster than integer arithmetic
 - download http://www.agner.org/optimize/instruction_tables.pdf to find all instruction latencies and thoughputs for Intel and AMD CPUs
- Beware of fancy CPU features!
 - avoid secret-dependent memory access patterns (cache attacks)
 - avoid secret-dependent conditional branches (timing, branch predictor attacks)
- ► Have a look at existing libraries (from OpenSSL to MPFQ):
 - plenty of great ideas in there!
 - you might even find bugs and vulnerabilities
- Read, code, hack, experiment!

Outline

- I. Scalar multiplication
- II. Elliptic curve arithmetic
- III. Finite field arithmetic
- IV. Software considerations
- V. Notions of hardware design

Describing hardware circuits

▶ We surely do **NOT** want to

- program millions of logic cells / transistors by hand
- connect their inputs and outputs by hand

Describing hardware circuits

▶ We surely do **NOT** want to

- program millions of logic cells / transistors by hand
- connect their inputs and outputs by hand
- Design circuits using a hardware description language (HDL)
 - VHDL, Verilog, etc.
 - usually independent from the target technology

Describing hardware circuits

▶ We surely do **NOT** want to

- program millions of logic cells / transistors by hand
- connect their inputs and outputs by hand

Design circuits using a hardware description language (HDL)

- VHDL, Verilog, etc.
- usually independent from the target technology

► HDL paradigm completely different from software programming languages

- used to describe concurrent systems: unable to express sequentiality
- structural and hierarchical description of the circuit

```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
13
14
15
    end architecture;
```

x + y = s + 2co

```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
13
14
15
    end architecture;
```

x + y = s + 2co

1 2 3	<pre>library ieee; use ieee.std_logic_1164.all;</pre>
4	entity ha is
5 6	<pre>port (x : in std_logic;</pre>
7	s : out std_logic;
8 9	<pre>co : out std_logic); end entity;</pre>
10 11	architecture arch of ha is
12 13	begin
14 15	and prohitocture.
15	end architecture;


```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
13
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
13
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
13
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
13
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
12
    begin
      s <= x xor y;</pre>
13
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
      s <= x xor y;
13
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
12
    begin
      s <= x xor y;</pre>
13
      co <= x and y;
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
    begin
12
      s <= x xor y;</pre>
13
      co <= x and y;
14
15
    end architecture;
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity ha is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              s : out std_logic;
7
              co : out std_logic );
8
    end entity;
9
10
    architecture arch of ha is
11
12
    begin
13
      s <= x xor y;</pre>
      co \leq x and y;
14
15
    end architecture;
```


1	library ieee;
2	<pre>use ieee.std_logic_1164.all;</pre>
3	
4	entity fa is
5	<pre>port (x : in std_logic;</pre>
6	y : in std_logic;
7	ci : in std_logic;
8	s : out std_logic;
9	<pre>co : out std_logic);</pre>
10	end entity;
11	
12	architecture arch of fa is
13	
14	
15	
16	
17	
18	
19	
20	begin
21	
22	
23	
24	
25	
26	end architecture;

x + y + ci = s + 2co

1	library ieee;
2	<pre>use ieee.std_logic_1164.all;</pre>
3	
4	entity fa is
5	<pre>port (x : in std_logic;</pre>
6	y : in std_logic;
7	<pre>ci : in std_logic;</pre>
8	s : out std_logic;
9	<pre>co : out std_logic);</pre>
10	end entity;
11	
12	architecture arch of fa is
13	
14	
15	
16	
17	
18	
19	
20	begin
21	
22	
23	
24	
25	
26	end architecture;

x + y + ci = s + 2co

1	library ieee;	
2	<pre>use ieee.std_logic_1164.all;</pre>	
3		
4	entity fa is	x + y + ci = s + 2co
5	<pre>port (x : in std_logic;</pre>	
6	y : in std_logic;	x y ci
7	ci : in std_logic;	
8	s : out std_logic;	Y Y Y
9	<pre>co : out std_logic);</pre>	d d d d d
10	end entity;	
11		
12	architecture arch of fa is	
13		
14		
15		
16		
17		
18		
19		
20	begin	
21		
22		·······
23		<u>h</u> h
24		CO S
25		
26	end architecture;	

1	library ieee;
2	<pre>use ieee.std_logic_1164.all;</pre>
3	
4	entity fa is
5	<pre>port (x : in std_logic;</pre>
6	y : in std_logic;
7	ci : in std_logic;
8	s : out std_logic;
9	<pre>co : out std_logic);</pre>
10	end entity;
11	
12	architecture arch of fa is
13	
14	
15	
16	
17	
18	
19	
20	begin
21	
22	
23	
24	
25	
26	end architecture;


```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
                                                                               x + y + ci = s + 2co
    entity fa is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
                                                                                                  ci
                                                                                   х
              ci : in std_logic;
7
              s : out std_logic;
8
              co : out std_logic );
9
    end entity;
                                                                                ha_0 × y
10
11
                                                                                        ha
12
    architecture arch of fa is
                                                                                      CO S
      component ha is
13
                                                                                  co 0
                                                                                           ls 0
        port ( x : in std_logic; y : in std_logic;
14
                s : out std_logic; co : out std_logic );
15
      end component;
16
      signal s_0 : std_logic;
17
      signal co_0 : std_logic;
18
19
20
    begin
      ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
22
                             s => s_0, co => co_0);
23
24
                                                                                        CO
25
    end architecture;
26
```

```
library ieee;
 1
    use ieee.std_logic_1164.all;
 2
 3
    entity fa is
 4
      port ( x : in std_logic;
 5
              y : in std_logic;
 6
              ci : in std_logic;
 7
              s : out std_logic;
 8
              co : out std_logic );
 9
    end entity;
10
11
12
    architecture arch of fa is
       component ha is
13
         port ( x : in std_logic; y : in std_logic;
14
                 s : out std_logic; co : out std_logic );
15
      end component;
16
       signal s_0 : std_logic;
17
       signal co_0 : std_logic;
18
19
20
    begin
       ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                              s => s_0, co => co_0);
22
      ha_1: ha port map ( x => s_0, y => ci,
23
                              s \Rightarrow s, co \Rightarrow co_1;
24
25
```

x + y + ci = s + 2coci х Х ha_0 ha CO S co 0 ls 0 ha 1 ha CO

end architecture; 26

```
library ieee;
 1
    use ieee.std_logic_1164.all;
 2
 3
    entity fa is
 4
      port ( x : in std_logic;
 5
              y : in std_logic;
 6
              ci : in std_logic;
 7
              s : out std_logic;
 8
              co : out std_logic );
 9
    end entity;
10
11
12
    architecture arch of fa is
       component ha is
13
         port ( x : in std_logic; y : in std_logic;
14
                 s : out std_logic; co : out std_logic );
15
      end component;
16
      signal s_0 : std_logic;
17
       signal co_0 : std_logic;
18
19
20
    begin
       ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                              s => s_0, co => co_0);
22
      ha_1: ha port map ( x => s_0, y => ci,
23
                              s \Rightarrow s, co \Rightarrow co_1;
24
25
```

x + y + ci = s + 2coci х Х ha_0 ha CO S co_0 s_0 Х V ha 1 ha CO

26 end architecture;

```
library ieee;
 1
    use ieee.std_logic_1164.all;
 2
 3
    entity fa is
 4
      port ( x : in std_logic;
 5
               y : in std_logic;
 6
               ci : in std_logic;
 7
               s : out std_logic;
 8
               co : out std_logic );
 9
    end entity;
10
11
12
    architecture arch of fa is
       component ha is
13
         port ( x : in std_logic; y : in std_logic;
14
                  s : out std_logic; co : out std_logic );
15
       end component;
16
       signal s_0 : std_logic;
17
       signal co_0 : std_logic;
18
19
20
    begin
       ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                               s => s_0, co => co_0);
22
       ha_1 : ha port map ( x \Rightarrow s_0, y \Rightarrow ci,
23
                               s \Rightarrow s, co \Rightarrow co_1;
24
25
```

CI х X V ha_0 ha CO S co_0 s_0 y Х ha 1 ha CO

x + y + ci = s + 2co

26 end architecture;

```
library ieee;
 1
    use ieee.std_logic_1164.all;
 2
 3
    entity fa is
 4
      port ( x : in std_logic;
 5
               y : in std_logic;
 6
               ci : in std_logic;
 7
               s : out std_logic;
 8
               co : out std_logic );
 9
    end entity;
10
11
12
    architecture arch of fa is
       component ha is
13
         port ( x : in std_logic; y : in std_logic;
14
                  s : out std_logic; co : out std_logic );
15
       end component;
16
       signal s_0 : std_logic;
17
       signal co_0 : std_logic;
18
19
20
    begin
       ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                               s => s_0, co => co_0);
22
       ha_1 : ha port map ( x \Rightarrow s_0, y \Rightarrow ci,
23
                               s \Rightarrow s, co \Rightarrow co_1;
24
25
```

x + y + ci = s + 2coCI х ha_0 × y ha CO S co_0 s_0 V Х ha 1 ha CO CO

26 end architecture;

```
library ieee;
 1
    use ieee.std_logic_1164.all;
 2
 3
    entity fa is
 4
      port ( x : in std_logic;
 5
               y : in std_logic;
 6
               ci : in std_logic;
 7
               s : out std_logic;
 8
               co : out std_logic );
 9
    end entity;
10
11
12
    architecture arch of fa is
       component ha is
13
         port ( x : in std_logic; y : in std_logic;
14
                  s : out std_logic; co : out std_logic );
15
       end component;
16
       signal s_0 : std_logic;
17
       signal co_0 : std_logic;
18
       signal co_1 : std_logic;
19
20
    begin
       ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                               s => s_0, co => co_0);
22
       ha_1 : ha port map ( x \Rightarrow s_0, y \Rightarrow ci,
23
                               s \Rightarrow s, co \Rightarrow co_1;
24
25
```

x + y + ci = s + 2coCI х ha_0 × y ha CO S co_0 s_0 V Х ha 1 ha CO S co_1 CO

26 end architecture;

```
library ieee;
 1
    use ieee.std_logic_1164.all;
 2
 3
    entity fa is
 4
       port ( x : in std_logic;
 5
               y : in std_logic;
 6
               ci : in std_logic;
 7
               s : out std_logic;
 8
               co : out std_logic );
 9
    end entity;
10
11
12
    architecture arch of fa is
       component ha is
13
         port ( x : in std_logic; y : in std_logic;
14
                  s : out std_logic; co : out std_logic );
15
       end component;
16
       signal s_0 : std_logic;
17
       signal co_0 : std_logic;
18
       signal co_1 : std_logic;
19
20
    begin
       ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                                s => s_0, co => co_0);
22
       ha_1 : ha port map ( x \Rightarrow s_0, y \Rightarrow ci,
23
                                s \Rightarrow s, co \Rightarrow co_1;
24
       co \leq co_0 \text{ or } co_1;
25
    end architecture;
26
```



```
library ieee;
 1
    use ieee.std_logic_1164.all;
 2
 3
    entity fa is
 4
       port ( x : in std_logic;
 5
               y : in std_logic;
 6
               ci : in std_logic;
 7
               s : out std_logic;
 8
               co : out std_logic );
 9
    end entity;
10
11
12
    architecture arch of fa is
       component ha is
13
         port ( x : in std_logic; y : in std_logic;
14
                  s : out std_logic; co : out std_logic );
15
       end component;
16
       signal s_0 : std_logic;
17
       signal co_0 : std_logic;
18
       signal co_1 : std_logic;
19
20
    begin
       ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                                s => s_0, co => co_0);
22
       ha_1 : ha port map ( x \Rightarrow s_0, y \Rightarrow ci,
23
                                s \Rightarrow s, co \Rightarrow co_1;
24
       co \leq co_0 \text{ or } co_1;
25
    end architecture;
26
```



```
library ieee;
1
    use ieee.std_logic_1164.all;
2
3
    entity fa is
4
      port ( x : in std_logic;
5
              y : in std_logic;
6
              ci : in std_logic;
7
              s : out std_logic;
8
              co : out std_logic );
9
    end entity;
10
11
12
    architecture arch of fa is
      component ha is
13
        port ( x : in std_logic; y : in std_logic;
14
                 s : out std_logic; co : out std_logic );
15
      end component;
16
      signal s_0 : std_logic;
17
      signal co_0 : std_logic;
18
      signal co_1 : std_logic;
19
20
    begin
      ha_0 : ha port map (x \Rightarrow x, y \Rightarrow y,
21
                              s => s_0, co => co_0);
22
      ha_1: ha port map ( x => s_0, y => ci,
23
                              s => s, co => co_1);
24
      co \leq co_0 \text{ or } co_1;
25
    end architecture;
26
```


x + y + ci = s + 2co

Design process

► Verification and debugging

- software simulator
- feed the circuit with test vectors
- extensive use of waveforms for debugging

Design process

Verification and debugging

- software simulator
- feed the circuit with test vectors
- extensive use of waveforms for debugging

► Synthesis

- converts the circuit description (HDL) into a netlist
- extraction of logic primitives (multiplexers, shifters, registers, adders, ...)
- logic minimization effort
- independent from the target technology

Design process

Verification and debugging

- software simulator
- feed the circuit with test vectors
- extensive use of waveforms for debugging

► Synthesis

- converts the circuit description (HDL) into a netlist
- extraction of logic primitives (multiplexers, shifters, registers, adders, ...)
- logic minimization effort
- independent from the target technology

Implementation

- mapping: builds a netlist of technology-dependent logic cells / transistors
- place and route: place each logic cell on the chip and route wires between them

Arithmetic over \mathbb{F}_{2^m}

▶ Polynomial representation: $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(F(x))$

Arithmetic over \mathbb{F}_{2^m}

- ▶ Polynomial representation: $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(F(x))$
 - elements of \mathbb{F}_{2^m} as polynomials modulo F(x):

$$A = a_{m-1}x^{m-1} + \dots + a_1x + a_0, \quad \text{with } a_i \in \mathbb{F}_2$$

• 1 bit per coefficient

- ▶ Polynomial representation: $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(F(x))$
 - elements of \mathbb{F}_{2^m} as polynomials modulo F(x):

$$A = a_{m-1}x^{m-1} + \dots + a_1x + a_0, \quad \text{with } a_i \in \mathbb{F}_2$$

- 1 bit per coefficient
- ▶ Addition: coefficient-wise addition over \mathbb{F}_p

- ▶ Polynomial representation: $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(F(x))$
 - elements of \mathbb{F}_{2^m} as polynomials modulo F(x):

$$A = a_{m-1}x^{m-1} + \cdots + a_1x + a_0$$
, with $a_i \in \mathbb{F}_2$

- 1 bit per coefficient
- ▶ Addition: coefficient-wise addition over \mathbb{F}_p
- ► Squaring: 2-nd power Frobenius

- ▶ Polynomial representation: $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(F(x))$
 - elements of \mathbb{F}_{2^m} as polynomials modulo F(x):

$$A = a_{m-1}x^{m-1} + \dots + a_1x + a_0, \quad \text{with } a_i \in \mathbb{F}_2$$

- 1 bit per coefficient
- ▶ Addition: coefficient-wise addition over \mathbb{F}_p
- ► Squaring: 2-nd power Frobenius
 - linear operation: each coefficient of the result is a linear combination of the input coefficients
 - for instance, over $\mathbb{F}_{2^{409}} = \mathbb{F}_2[x]/(x^{409} + x^{87} + 1)$

$$A^{2} = \ldots + (a_{86} + a_{247} + a_{408})x^{172} + \ldots + (a_{213} + a_{374})x^{17} + \ldots$$

- ▶ Polynomial representation: $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(F(x))$
 - elements of \mathbb{F}_{2^m} as polynomials modulo F(x):

$$A = a_{m-1}x^{m-1} + \dots + a_1x + a_0, \quad \text{with } a_i \in \mathbb{F}_2$$

- 1 bit per coefficient
- ▶ Addition: coefficient-wise addition over \mathbb{F}_p
- ► Squaring: 2-nd power Frobenius
 - linear operation: each coefficient of the result is a linear combination of the input coefficients
 - for instance, over $\mathbb{F}_{2^{409}} = \mathbb{F}_2[x]/(x^{409} + x^{87} + 1)$

$$A^{2} = \ldots + (a_{86} + a_{247} + a_{408})x^{172} + \ldots + (a_{213} + a_{374})x^{17} + \ldots$$

Inversion: no need for a full blown extended Euclidean algorithm

- ▶ Polynomial representation: $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(F(x))$
 - elements of \mathbb{F}_{2^m} as polynomials modulo F(x):

$$A = a_{m-1}x^{m-1} + \dots + a_1x + a_0, \quad \text{with } a_i \in \mathbb{F}_2$$

- 1 bit per coefficient
- ▶ Addition: coefficient-wise addition over \mathbb{F}_p
- ► Squaring: 2-nd power Frobenius
 - linear operation: each coefficient of the result is a linear combination of the input coefficients
 - for instance, over $\mathbb{F}_{2^{409}} = \mathbb{F}_2[x]/(x^{409} + x^{87} + 1)$

$$A^{2} = \ldots + (a_{86} + a_{247} + a_{408})x^{172} + \ldots + (a_{213} + a_{374})x^{17} + \ldots$$

Inversion: no need for a full blown extended Euclidean algorithm

- use Fermat's little theorem: $A^{-1} = A^{2^{m-2}} = (A^{2^{m-1}-1})^2$
- computing $A^{2^{m-1}-1}$ only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]

• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- ► Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)

- Low-area design: parallel-serial multiplier
 - iterative algorithm of quadratic complexity
 - d coefficients of the second operand processed at each iteration (most-significant coefficients first)
 - $\lceil m/d \rceil$ clock cycles for computing the product
 - area grows with *d*: area-time trade-off

• feedback loop for accumulation of the result

- feedback loop for accumulation of the result
- coefficient-wise partial product with \mathbb{F}_2 multipliers (AND gates)

- feedback loop for accumulation of the result
- coefficient-wise partial product with \mathbb{F}_2 multipliers (AND gates)
- free shifts!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

- feedback loop for accumulation of the result
- coefficient-wise partial product with \mathbb{F}_2 multipliers (AND gates)
- free shifts!
- a few \mathbb{F}_2 adders for reduction modulo F

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography

- feedback loop for accumulation of the result
- coefficient-wise partial product with \mathbb{F}_2 multipliers (AND gates)
- free shifts!
- a few \mathbb{F}_2 adders for reduction modulo F
- coefficient-wise addition (XOR gates in \mathbb{F}_2)

Thank you for your attention

Questions?

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography